Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Synthesis of aluminum alloys from aluminum-based dispersed waste

https://doi.org/10.17073/0021-3438-2020-5-53-62

Abstract

The paper presents the results of research on the synthesis of Al–Si–Mg (AK7ch), Al–Si–Mn (AK12), Al–Si–Cu–Mg (AK6M2) and Al–Mg–Mn (AMg5) aluminum alloys using dispersed waste: beverage cans (Al–Mn–Mg system), cast alloy sawdust (Al–Si–Mg system), twisted chips of Al–Cu–Mg and Al–Mg–Mn deformable alloys. The waste microstructure was studied in the initial state, and the typical sizes of main phases were determined. The main criteria for the quality of recyclable waste were determined: purity (kp), contact with the atmosphere (ka) and maximum metal recovery (ММе). Based on the proposed criteria, the waste was graded according to recycling efficiency. Can waste received the lowest total score, and AK9ch alloy sawdust had the highest score. Experiments on the synthesis of Al–Si–Mg (AK7ch), Al–Si–Mn (AK12), Al–Si–Cu–Mg (AK6M2) and Al–Mg–Mn (AMg5) alloys demonstrated that the yield varies from 82 to 96 %. The minimum yield was observed for the AK12 alloy with can waste predominating in the charge composition. The chemical compositions of alloys in terms of the content of the main alloying and impurity elements met the regulatory documentation requirements. Mechanical tests showed that synthesized alloys have a guaranteed margin of strength and plasticity in comparison with regulatory documentation requirements. Metallographic studies revealed that the microstructure of synthesized alloys is free from non-metallic inclusions and gas porosity. Non-modified and modified Al–Mg–Mn (AMg5) alloy samples were subjected to cold rolling in several passes until cracking. The non-modified alloy sample began to crack after the 10th pass. The modified alloy sample withstood 12 passes before cracking. The degree of deformation over the sample thickness was 60.5 % for the non-modified alloy, and 67.2 % for the modified alloy.

About the Authors

V. I. Nikitin
Samara State Technical University (SSTU)
Russian Federation

Dr. Sci. (Eng.), prof., head of the Department of foundry and high-efficiency technologies

443100, Samara, Molodogvardeiskaya str., 244



K. V. Nikitin
Samara State Technical University (SSTU)
Russian Federation

Dr. Sci. (Eng.), prof., dean of the Faculty of mechanical engineering, metallurgy and transport

443100, Samara, Molodogvardeiskaya str., 244



I. Yu. Timoshkin
Samara State Technical University (SSTU)
Russian Federation

Cand. Sci. (Eng.), associate prof., Department of foundry and high-efficiency technologies

443100, Samara, Molodogvardeiskaya str., 244



R. M. Biktimirov
Samara State Technical University (SSTU)
Russian Federation

engineer, assistant, Department of foundry and high-efficiency technologies

443100, Samara, Molodogvardeiskaya str., 244



References

1. Nappi C. The global aluminium industry 40 years from 1972. World Aluminium. 2013. http://www.worldaluminium.org/media/filer_public/2013/02/25/an_outlook_of_the_global_aluminium_industry_1972_-_present_day.pdf.

2. Dudin M.N., Voykova N.A., Frolova E.E., Artemieva J.A., Rusakova E.P., Abashidze A.H. Modern trends and challenges of development of global aluminum industry. Metalurgija. 2017. Vol. 56. P. 255—258.

3. Shaymaa Abbas Abdulsada. Preparation of aluminum alloy from recycling cans wastes. Int. J. Current Eng. Technol. 2013. Vol. 3. No. 4. P. 1348—1350.

4. Hatayama H., Daigo I., Matsuno Y., Adachi Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour. Conserv. Recycl. 2012. Vol. 66. P. 8—14.

5. Mustafa A. Rijab, Ali I. Al-Mosawi, Shaymaa A. Abdulsada, Raied K. Ajmi. Recycling of aluminum castings waste. EC Chem. 2015. Vol. 1. Iss. 2. P. 48—55.

6. Yongxiang Yang, Yanping Xiao, Bo Zhou, Markus A. Reuter. Aluminium recycling: scrap melting and process simulation. In: Sustainable developments in metals processing: Proc. John Floyd Int. Symp. (Melbourne, Australia, 36 July 2005). Р. 251—263.

7. Praveenkumar C., Karuppuswamy P., Bhagyanathan C. Preliminary studies on melting of Lm25 grade aluminium alloy for industrial applications. Int. J. ChemTech Res. 2017. Vol. 10. No. 14. Р. 143—150.

8. Saravanakumar P., Bhoopashram J., Kavin Prasath M., Jaycharan M. Role of salt fluxes in aluminium refining: a review. Int. J. Latest Eng. Manag. Res. 2017. Vol. 2. Iss. 9. P. 45—51.

9. Timoshkin I.Yu., Nikitin K.V., Nikitin V.I. Main problems and directions in the production of high-quality aluminum alloys from recycled metal waste. Liteishchik Rossii. 2010. No. 8. Р. 24—26 (In Russ.).

10. Gaustad G., Olivetti E., Kirchain R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour. Conserv. Recycl. 2012. Vol. 58. P. 79—87.

11. Marcos de Oliveira Morais, Antonio Sérgio Brejão, Marcelo Araújo, Pedro Luiz de Oliveira Costa Neto. The reverse logistics helping to reduce costs of raw material in a pressure aluminum casting. Environ. Quality Manag. 2018. Vol. 28. Iss. 3. Р. 40—46.

12. Gronostajski J., Marciniak H., Matuszak A. New methods of aluminium and aluminium-alloy chips recycling. J. Mater. Process. Technol. 2000. Vol. 106. Iss. 1-3. P. 34—39.

13. Amini Mashhadi H., Moloodi A., Golestanipour M., Karimi E.Z.V. Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux. J. Mater. Process. Technol. 2009. Vol. 209. Iss. 7. Р. 3138—3142.

14. Velasco E., Nino J. Recycling of aluminium scrap for secondary Al—Si alloys. Waste Manag. Res. 2011. Vol. 29. Iss. 7. P. 686—693.

15. Gökhan Özer, Sarp Burgucu, Müzeyyen Marşoğlu. A study on the recycling of aluminium alloy 7075 scrap. Mater. Test. 2012. Vol. 54. No. 3. P. 175—178.

16. Løvik A.N., Müller D.B. A material flow model for impurity accumulation in beverage can recycling systems. Light Metals. 2014. P. 907—911.

17. Adam J. Gesing, Subodh K. Das, Raouf O. Loutfy. Production of magnesium and aluminum-magnesium alloys from recycled secondary aluminum scrap melts. J. Miner. Met. Mater. Soc. 2016. Vol. 68. No. 2. P. 585—592.

18. Yuksel C., Tamer O., Erzi E., Aybarc U., Cubuklusu E., Topcuoglu O., Cigdem M., Dispinar D. Quality evaluation of remelted A356 scraps. Arch. Foundry Eng. 2016. Vol. 16. Iss. 3. P. 151—156.

19. Yusuf N.K., Lajis M.A., Ahmad A. Hot press as a sustainable direct recycling technique of aluminium: mechanical properties and surface integrity. Materials. 2017. Vol. 10. P. 1—18.

20. Selyanin I.F., Deev V.B., Kukharenko A.V. Resource-saving and environment-saving production technologies of secondary aluminum alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 272—276.

21. Nikitin V.I., Nikitin K.V. Heredity in cast alloys. Мoscow: Mashinostroenie-1, 2005 (In Russ.).

22. Nikitin K.V., Nikitin V.I., Timoshkin I.Yu. Quality control of cast products from aluminium alloys based on the phenomenon of structural heredity. Moscow: Radunitsa, 2015 (In Russ.).

23. Nikitin K.V., Nikitin V.I., Krivopalov D.S., Glushchenkov V.A., Chernikov D.G. Influence of various treatment types on the structure, density, and electrical conductivity of Al—Mg system wrought alloys. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 5. Р. 475—480.


Review

For citations:


Nikitin V.I., Nikitin K.V., Timoshkin I.Yu., Biktimirov R.M. Synthesis of aluminum alloys from aluminum-based dispersed waste. Izvestiya. Non-Ferrous Metallurgy. 2020;(5):53-62. (In Russ.) https://doi.org/10.17073/0021-3438-2020-5-53-62

Views: 576


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)