Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Short fluoride cycle in tungsten technology

https://doi.org/10.17073/0021-3438-2020-5-33-42

Abstract

It was found that when the tungsten anode is electrochemically dissolved in a melt of acidic alkali metal fluorides (K,Na)H2F3 and hydrogen fluoride at t ~ 37 °C, the resulting atomic fluorine reacts completely with tungsten to form tungsten hexafluoride (WF6). The latter dissolves in the melt to form complex compounds (K,Na)2WF8 and (K,Na)WF7, which is accompanied by an increase in the melting electrolyte point. Adding up to 23 mol.% LiF and WF6 electrolyte saturation lower the electrolyte melting point below 18 °C making it possible to obtain simultaneously gaseous WF6 at the anode and H2 at the cathode in an electrochemical process at t = 35÷40 °C and an anode current density of 0.3–0.5 A/cm2. During gas-phase deposition of tungsten, dense layers are formed from the resulting gas-containing mixture with a stoichiometric ratio of components at t = 550÷600 °C, and the resulting HF is captured by an electrolyte and used to produce a mixture of WF6+H2 , ensuring the circulation of reagents and the absence of stored waste. A short fluoride cycle in the tungsten technology is presented based on the results obtained. It uses two operations: electrochemical synthesis of the WF6+H2 gaseous mixture in an electrolyzer with a bulk anode made of metal tungsten fragments, and WF6 reduction by hydrogen with capture the resulting HF. This cycle reduces the chain of process units in the cycle by almost 2 times with a corresponding investment reduction and significant production cost saving. The paper provides process flow diagram of the production chain for environmentally friendly tungsten production with a capacity of ~48.5 tons per year, which can be replicated and modified to produce the necessary products.

About the Authors

Yu. M. Korolev
Scientific-Technical Association «Powder metallurgy»
Russian Federation

Dr. Sci. (Eng.), prof., president

105005, Moscow, Second Bauman str., 9/23



A. N. Timofeev
JSC «Kompozite»
Russian Federation

Dr. Sci. (Eng.), first deputy of general director

141079, Moscow region, Korolev, Pionerskaya str., 4



References

1. Korolev Yu.M. Fluoride conversion in tungsten technology. Moscow: Sputnik+, 2018 (In Russ.).

2. Korolev Yu.M. Environmеntally safe fluoride cycle in tungsten technology. Substantiation of the production cycle with fluorine and hydrogen recycle. Russ. J. NonFerr. Met. 2017. Vol. 58. No. 1. P. 44—54. http://www.fluoridetech.ucoz.ru.

3. Korolev Yu.M., Levashov E.A. Ecologically clean fluoride conversion — new technology of tungsten production instead powder metallurgy. Proc. 19 Plansee Seminar 2017, Intern. Conf. on refractory metals and hard materials (Austria, Reutte, 29 May—2 June 2017). RC 10/1 — RC 10/19. http://www.fluoridetech.ucoz.ru.

4. Korolev Yu.M. Optimization of fluorination of tungsten powder with fluorine in a fixed bed reactor with provision of environmental requirement. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 6. P. 544—554. http://www.fluoridetech.ucoz.ru.

5. Korolev Yu.M. Deposition of tungsten by reduction of its hexafluoride with hydrogen under the stoichiometric component ratio: an environmentally pure production process. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 2. Р. 149—154. http://www.fluoridetech.ucoz.ru.

6. Neiberlein V.A., Kenworthy N. Report of investigation. US. Bureau of mines. 1959. No. 5539. P. 1—27.

7. Reid W.E., Brenner A. Tungsten for high-temperature coating. U.S. Bureau of standards. Tech. News Bull. 1960. Vol. 44. No. 2. P. 32—33.

8. Martin W.R., Heestand R.L., McDonald R.E., Reimann G.Al. Application of chemical vapor deposition to the production of tungsten tubing. Proc. Conf. on chemical vapor deposition of refractory metals, alloys and compounds (USA, Tennesse, Gаtlinburg, 12—14 Sept. 1967). P. 303—311.

9. Lazarchuk V.V., Ledovskikh A.K., Matveev A.A., Galata A.A., Murlyshov A.P., Volchkov V.S., Sinkin I.M. Complex waste-free technology of producing of tungsten objects by gas-phase deposition. In: Physical and technical problems of atomic energy and industry: Abstracts of the V Intern. scientific and practical conf. (Tomsk, 7—8 June 2010). Tomsk: Izd. TPU, 2010. Section 3. P. 102 (In Russ.).

10. Guzeeva T.I., Andreev G.G., Krasil’nikov V.A., Makarov F.V. Complex processing of salts, concentrates, wastes of refractory metals with using fluorine. In: Fluoride technology: Abstracts of the all-Russian conf. (Tomsk, 24—26 June 2009). Tomsk: Izd. TPU, 2009. P. 47 (In Russ.).

11. Brenner A., Chase C., Reid W.E., Connor J.H. Production of tungsten objects: Pat. 3139658 (USA). 1964.

12. Vybyvanets V.I., Kosukhin V.V., Cherenkov A.V., Shilkin G.S. Fluoride technology of producing pure tungsten objects. In: Physical and technical problems of atomic energy and industry: Abstracts of the V Intern. scientific and practical conf. (Tomsk, 7—8 June 2010) Tomsk: Izd. TPU, 2010. Section 3. P. 129 (In Russ.).

13. Shroff A.M., Deival G. Recent development in the chemical vapor deposition of tungsten and molybdenum. High Temp. High Press. 1971. Vol. 3. P. 695—712.

14. Heestand R.L., Leitten C.F. Parameters for the production refractory-metal tubing by the vapor deposition process. Refractory metals and alloys III. Applied aspects: Proc. 3-rd Intern. techn. conf. (Los-Angeles, Dec. 1966). N.-Y.—London-Paris, 1966. P. 113—125.

15. Weinberg A.F., Lindgren J.R., Mills R.G. Vapor deposited tungsten for application as a thermionic emitter material: Proc. Intern. conf. on termionic electrical power generation (London, 20—24 Sept. 1965). London, 1965. P. 542—553.

16. Thin wall tungsten tubing prodused by vapor deposition. Mater. Design Eng. 1966. Vol. 64. No. 2. P. 19.

17. Lewin R.H. Chemical vapor coating. Engineering. 1970. Vol. 209. No. 5429. P. 535—538.

18. Martin W.R. Chemical vapor deposition makes dense tungsten part. Metal. Progress. 1968. Vol. 97. No. 5. P. 93.

19. Spruiell J.E., Shuler B.F., Patterso F.H. Deformation studies of termochemically deposited tungsten sheet. Trans. Metallurg. Soc. AIME. 1967. Vol. 239. No. 11.

20. Tuffias R., Gard A., Kuplan R. Large seamless tungsten crucible made by CVD. Int. J. Refract. Hard Met. 1984. Vol. 3. No. 3. P. 175.

21. Cuomo J.J., Ziegler J.F., Woodal J.M. Tungsten for solar energy. IAMI. 1975. August. P. 26.

22. Korolev Yu.M., Stolyarov V.I. Reduction of refractory metals fluorides with hydrogen. Moscow: Metallurgizdat, 1981 (In Russ.).

23. Galkin N.P., Krutikov A.B. Technology of fluorine. Moscow: Gosatomizdat, 1968 (In Russ.).

24. Galkin N.P., Maiorov A.A,, Veryatin V.U., Sudarikov B.N., Nikolaev N.S., Shishkov Yu.D., Krutikov A.B. Chemistry and technology of uranium fluoride compounds. Moscow: Gosatomizdat, 1961 (In Russ.).

25. Barber E.J., Cady G.H. Some physical properties of tungsten hexafluoride. J. Phys. Chem. Soc. 1956. Vol. 60. No. 4. Р. 505—506.

26. Cady G.H., Hargreaves G.B. Vapor pressure of some heavy transition metal hexafluorides. J. Chem. Soc. 1961. Vol. 58. P. 1563—1574.

27. Properties of fluorides. Reactor Fuel Proceeding. 19641965. Vol. 8. No. 1. Р. 24—26.

28. Ryss I.G. Chemistry of fluorine and its inorganic compounds. Moscow: Goskhimizdat, 1956 (In Russ.).

29. Bergman A.G., Dergunov E.P. General phase diagram for KF—LiF—NaF system. Compt. Rend. Acad. Sci. 1941. Vol. 31. P. 753—755.

30. Zelikman A.N., Nikitina L.S. Tungsten. Moscow: Metallurgiya, 1978 (In Russ.).

31. Guidance on measuring the concentration of harmful substances in the air of the working area. Issue XXI. Moscow: Ministry of health of the USSR, 1986 (In Russ.).


Review

For citations:


Korolev Yu.M., Timofeev A.N. Short fluoride cycle in tungsten technology. Izvestiya. Non-Ferrous Metallurgy. 2020;(5):33-42. (In Russ.) https://doi.org/10.17073/0021-3438-2020-5-33-42

Views: 680


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)