Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Physical-chemical transformations during reduction treatment of copper concentrate smelting slags

https://doi.org/10.17073/0021-3438-2020-5-13-22

Abstract

Highly efficient autogenous methods introduced for smelting copper sulfide concentrates led to large volumes of copper-rich slags produced. Existing methods for their processing (such as flotation, various methods of reduction smelting) in separate units are ineffective and require significant costs. The use of Vanyukov furnaces for copper concentrate processing allows for slag reduction treatment in the furnace itself by creating a separate recovery zone. Due to the need for depleting copper-containing slags, the possibility of their reduction treatment was investigated. For these purposes, the feed including copper concentrates and quartz flux was subjected to oxidizing smelting at t = 1280÷ ÷1300 °C several times. The resulting slags were subjected to reduction treatment and analyzed using thermal, X-ray phase, mineralogical, electron probe and chemical analysis. The complete melting temperatures of oxidizing smelting slag samples are noted in the range of t = 1225÷ ÷1280 °С. According to mineralogical studies, the main phases of these slags are magnetite (Fe3O4) and fayalite (2FeO·SiO2) represented by large grains. In addition, the samples contain sulfide compounds: chalcosine and bornite solid solutions (Cu2S–Cu5FeS4), sphalerite (ZnS), galena (PbS). Slag reduction treatment was carried out at t = 1300 °С in the presence of activated carbon following by a decrease in the copper content in slags by an average of 0.45–0.65 % with the magnetite content reduced by 3.6–3.8 times. Slag samples featured strongly pronounced large fayalite crystals where the faylaite content increased sharply due to magnetite reduction with metallized phases reach in lead and zinc concentrated on grain boundaries. Reduction treatment intensifies the following transformations: the transition of iron from one oxidation state to another (Fe3+→Fe2+) to form fayalite, coalescence of sulfide inclusions, and formation of a matte phase containing copper and iron. During the reduction treatment of slags, lead and zinc can be sublimed with their further extraction.

About the Authors

L. V. Sokolovskaya
Satbayev University, Metallurgy and Ore Beneficiation Institute JSC
Kazakhstan

Cand. Sci. (Eng.), associate prof., senior researcher of Laboratory pyrometallurgy of heavy non-ferrous metals

050010, Almaty, Shevchenko str., 29/133



B. K. Kenzhaliev
Satbayev University, Metallurgy and Ore Beneficiation Institute JSC
Kazakhstan

Dr. Sci. (Eng.), prof., general director – chairman of the board

050010, Almaty, Shevchenko str., 29/133



S. A. Kvyatkovskiy
Satbayev University, Metallurgy and Ore Beneficiation Institute JSC
Kazakhstan

Dr. Sci. (Eng.), chief of Laboratory pyrometallurgy of heavy non-ferrous metals

050010, Almaty, Shevchenko str., 29/133



A. S. Semenova
Satbayev University, Metallurgy and Ore Beneficiation Institute JSC
Kazakhstan

master of technical science, lead engineer of Laboratory pyrometallurgy of heavy non-ferrous metals

050010, Almaty, Shevchenko str., 29/133



R. S. Seisembayev
Satbayev University, Metallurgy and Ore Beneficiation Institute JSC
Kazakhstan

master of technical science, engineer of Laboratory pyrometallurgy of heavy non-ferrous metals

050010, Almaty, Shevchenko str., 29/133



References

1. Bellemans I., De Wilde E., Moelans N., Verbeken K. Metal losses in pyrometallurgical operations — A review. Adv. Colloid Interface Sci. 2018. Vol. 255. P. 47—63. https://doi.org/10.1016/j.cis.2017.08.001.

2. Guo Z., Pan J., Zhu D., Congcong Y. Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel. Powder Technol. 2018. Vol. 329. P. 55—64. https://doi.org/10.1016/j.powtec.2018.01.063.

3. Guo Z., Pan J., Zhu D., Zhang F. Innovative methodology for comprehensive and harmless utilization if waste copper slag via selective reduction-magnetic separation process. J. Cleaner Product. 2018. Vol. 187. P. 910—922. https://doi.org/10.1016/j.jclepro.2018.03.264.

4. Sarfo P., Wyss G., Ma G., Das A., Young C. Carbothermal reduction of copper smelter slag for recycling into pig iron and glass. Miner. Eng. 2017. Vol. 107. P. 8—19. https://doi.org/10.1016/j.mineng.2017.02.006.

5. Ryabko A.G., Tsemekhman L.Sh. The development of autogenous processes in the metallurgy of copper and nickel. Tsvetnye metally. 2003. No. 7. P. 58—63 (In Russ.).

6. Lazarev V.I., Spesivtsev A.V., Bystrov V.P., Ladin N.A., Zaitsev V.I. The development of Vanyukov smelting with depletion of slag. Tsvetnye metally. 2000. No. 6. P. 33—36 (In Russ.).

7. Okanigbe D.O., Popoola A.P.I., Adeleke A.A., Otunniyi I.O., Popoola O.M. Investigating the impact of pretreating a waste copper smelter dust for likely higher recovery of copper. In: Procedia 2nd Int. conf. on sustainable materials processing and manufacturing (SMPM 2019) (8—10 March 2019). Johannesburg: University of Johannesburg, 2019. P. 430—435.

8. Wang Q.-m., Guo X.-y., Tian Q.-h. Copper smelting mechanism in oxygen bottom-blown furnace. Trans. Nonferr. Met. Soc. China. 2017. Vol. 27. Iss. 4. P. 946—953. https://doi.org/10.1016/S1003-6326(17)60110-9.

9. Chen C., Zhang L., Jahanshahi S. Thermodynamic modeling of arsenic in copper smelting process. Metall. Mater. Trans. B. 2010. Vol. 41. Iss. 6. P. 1175—1185. https://doi.org/10.1007/s11663-010-9431-z.

10. Gonzalea C., Parra R., Klenovcanova A., Imris I., Sanchez M. Reduction of Chilean copper slags: a case of waste management project. Scand. J. Metall. 2005. Vol. 34. Iss. 2. Р. 143—149. https://doi.org/10.1111/j.1600-0692.2005.00740.x.

11. Martirosyan V.A., Sasuntsyan M.E. Slags of the metallurgical plants of Armenia at fine grinding. Izvestiya Vuzov. Chernaya Metallurgiya. 2019. Vol. 62. No. 1. P. 8—14 (In Russ.).

12. Tsymbulov L.B., Kolosova E.Yu., Knyazev M.V. The thermodynamic analysis of equilibrium between slag and blister copper in Vaniukov two. Tsvetnye metally. 2009. No. 7. P. 30—35 (In Russ.).

13. Komkov A.A., Bystrov V.P., Fedorov A.N. Investigation of the behavior of copper and nickel during the deep oxidation of matte in the presence of slag. Tsvetnye metally. 2006. No. 9. P. 11—15 (In Russ.).

14. Komkov A.A., Bystrov V.P., Rogachev M.B. Distribution of impurities during melting of copper sulfide raw materials in Vanyukov furnace. Tsvetnye metally. 2006. No. 5. P. 17—24 (In Russ.).

15. Rusakov M.R. The design of the depletion unit for the process of high-intensity depletion of slag. Tsvetnye metally. 2006. No. 10. P. 28—33 (In Russ.).

16. Kenzhaliev B.K., Kvyatkovskii S.A., Kozhakhmetov S.M., Sokolovskaya L.V., Semenova A.S. Depletion of waste slag of Balkhash copper smelter. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2018. No. 3. P. 45—53 (In Russ.).

17. Kenzhaliev B.K., Kvyatkovskii S.A., Kozhakhmetov S.M., Sokolovskaya L.V., Kenzhaliev É.B., Semenova A.S. Determination of optimum production parameters for depletion of balkhash copper-smelting plant dump slags. Metallurgist. 2019. Vol. 63. Iss. 7—8. P. 759—765. https://doi.org/10.1007/s11015-019-00886-9.

18. Bekenov M.S., Sokolovskaya L.V., Kvyatkovskaya M.N., Semenova A.S. Processing sulfide concentrates by Vanyukov smelting with decrease content copper in slag. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2010. No. 5. P. 14—20 (In Russ.).

19. Selivanov E.N., Gulyaeva R.I. Carbothermic reduction of metals in the FeS—Cu1.96 S—CaO system. Russ. Metallurgy (Metally). 2019. Iss. 3. P. 216—222. https://doi.org/10.1134/S003602951903011X.

20. Charkin D.O., Sadakov A.V., Omel’yanovskii O.E., Kazakov S.M. Synthesis, crystal structure, and properties of novel perovskiteoxychalcogenides, Ca2 CuFeO3 Ch (Ch = = S, Se). Mater. Res. Bull. 2010. Vol. 45. Iss. 12. P. 20122016. https://doi.org/10.1016/j.materresbull.2010.07.023.

21. Gulyaeva R., Selivanov E., Mansurova A. Kinetics of the calcium oxysulfides redaction by carbon monoxide. Defect Diffusion Forum. 2009. Vol. 283—286. P. 539—544. https://doi.org/10.4028/www.scientific.net/DDF.283-286.539.

22. Kuznetsov Yu.S., Kachurina O.I. Thermodynamic analysis of iron oxides reduction using carbon and water vapour. Izvestiya Vuzov. Chernaya Metallurgiya. 2019. Vol. 62. No. 5. P. 394—406 (In Russ.).

23. Avarmaa K., Klemettinen L., O’Brien H., Taskinen P. Urban mining of precious metals via oxidizing copper smelting. Miner. Eng. 2019. Vol. 133. P. 95—102. https://doi.org/10.1016/j.mineng.2019.01.006.

24. Shui L., Cui Z., Ma X., Rhamdhani M.A., Nguen A.V., Zhao B. Understanding of bath surface wave in bottom blown copper smelting furnace. Metall. Mater. Trans. B. 2016. Vol. 47. Iss. 1. P. 135—144. https://doi.org/10.1007/s11663-015-0466-z.


Review

For citations:


Sokolovskaya L.V., Kenzhaliev B.K., Kvyatkovskiy S.A., Semenova A.S., Seisembayev R.S. Physical-chemical transformations during reduction treatment of copper concentrate smelting slags. Izvestiya. Non-Ferrous Metallurgy. 2020;(5):13-22. (In Russ.) https://doi.org/10.17073/0021-3438-2020-5-13-22

Views: 794


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)