Thermodynamic analysis of zinc sulfide dissolution stoichiometry in sulfuric acid solution with oxygen
https://doi.org/10.17073/0021-3438-2020-4-22-28
Abstract
A thermodynamic study of zinc sulfide high temperature oxidation leaching was conducted. Several processes can run simultaneously while metal sulfides are dissolved by oxidants in acidic solutions. Thermodynamic calculations were made using stoichiometric equations with equal oxidant consumption in order to identify the proportion of potential reactions. Moreover, stoichiometric coefficients were chosen in such a way as to reagents could exchange 1 mole of electric charge. This approach ensures a comparison of different oxidants in terms of their effectiveness in sulfides leaching. Thermodynamic analysis results obtained agree with experimental data confirming that oxidizing reactions with the formation of sulfur and sulfate ions prevail in zinc sulfide dissolution in sulfuric acid solutions under the oxygen effect. The effect of oxygen consumption and initial sulfuric acid concentration on the proportion of these reactions and equilibrium concentration of zinc cations in the solution was studied. Thermodynamic analysis showed that if the acid concentration is insufficient and limits the maximum progress of zinc sulfide oxidation with sulfur formation, oxygen is also consumed for the oxidation reaction with the formation of sulfate ions spending oxygen less effective due to 4 times less zinc cations passing to the solution. Thermodynamic calculations made it possible to find out the optimal proportions of oxygen consumption and initial sulfuric acid concentration to achieve the maximum zinc equilibrium concentration in the solution with more effective oxidant consumption without any labor-intensive experiments. The equilibrium concentration of zinc cations in the solution is in direct proportion to the initial acid concentration, and zinc cation formation is in direct proportion to oxygen consumption at the optimal acid concentration.
About the Authors
G. V. SolovyevaRussian Federation
Cand. Sci. (Chem.), Assistant prof., Department of general chemistry
620002, Ekaterinburg, Mira str., 19
E. B. Kolmachikhina
Russian Federation
Cand. Sci. (Eng.), Senior engineer, Department of metallurgy of non-ferrous metals (MNFM)
620002, Ekaterinburg, Mira str., 19
S. V. Mamyachenkov
Russian Federation
Dr. Sci. (Eng.), Prof., Head of the Department of MNFM
620002, Ekaterinburg, Mira str., 19
References
1. Polosikhin V.A., Naftal’ M.N., Shestakova R.D., Shur M.B., Popper E.Kh. Nadezhdinskii metallurgical works: New development horizon. Tsvetnye Metally. 2001. No. 6. P. 53—55 (In Russ.).
2. Naftal’ M.N., Kuznetsov N.S., Naboichenko S.S., Solntsev K.A., Bryukvin V.A. Development of the nickel-refining production at Norilsk Nickel Harjavalta Oy in GMK Norilsk Nickel. Russian Metallurgy (Metally). 2019. No. 5. P. 495—506. DOI: 10.1134/S0036029519050069.
3. Habashi F. A new era in pressure hydrometallurgy. Metall. 2014. Vol. 68. No. 1-2. P. 27—34.
4. Mackey P.J. Oxygen in non-ferrous metallurgical processes past, present and future. Canadian Metallurgical Quarterly.1989. Vol. 28. No. 3. P. 211—224. DOI: 10.1179/cmq.1989.28.3.211.
5. Halfyard J.E., Hawboldt K. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurg. Vol. 109. No. 1—2. P. 80—89. DOI: 10.1016/j.hydromet.2011.05.012.
6. Sadykov S.B., Nabojchenko S.S. Autoclave leaching of sulfide zinc concentrates with increased content of impurities. Tsvetnye Metally. 2005. No. 4. P. 42—46 (In Russ.).
7. Zhukov V.V., Laari A., Lampinen M., Koiranen T. A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate. Chem. Eng. Res. Design. 2017. No. 118. P. 131—141. DOI: 10.1016/j.cherd.2016.12.004.
8. Yan S., Xie G., Yu Z., Shi H., Mo T., Dong H. Pressure oxidative acid leaching of complex polymetallic sphalerite containing high iron and indium. Chinese J. Rare Metals. 2016. Vol. 40. No. 4. P. 378—384. DOI: 10.13373/j.cnki.cjrm.2016.04.013.
9. Xu H., Wei C., Li C., Fan G., Deng Z., Zhou X., Qiu S. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Separat. Purif. Technol. 2012. Vol. 85. No. 2. P. 206—212. DOI: 10.1016/j.seppur.2011.10.012.
10. Gu Y., Zhang T.-A., Liu Y., Mu W.-Z., Zhang W.-G., Dou Z.-H., Jiang X.-L. Pressure acid leaching of zinc sulfide concentrate. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. No. 1. P. 136—140. DOI: 10.1016/S1003-6326(10)60028-3.
11. Becze L., Gomez M.A., Berre J.F.L.E., Pierre B. Demopoulos G.R. Formation of massive gunningite-jarosite scale in an industrial zinc pressure leach autoclave: A characterization study. Canad. Metal. Quart. 2009. Vol. 48. No. 2. P. 99—108.
12. Guler E. Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology. Physicochem. Probl. Miner. Proces. 2016. Vol. 52. No. 1. P. 479—496. DOI: 10.5277/ppmp160139.
13. Xu H., Wei C., Li C., Deng Z., Fan G., Li M., Li X. Selective recovery of valuable metals from partial silicated sphalerite at elevated temperature with sulfuric acid solution. J. Industr. Eng. Chem. 2014. Vol. 20. No. 4. P. 1373— 1381. DOI: 10.1016/j.jiec.2013.07.021.
14. Shakhalov A.A., Ospanov E.A., Naboychenko S.S., Fomenko I.V. Features of pressure oxidative leaching of substandard copper-zinc sulfide concentrates. Tsvetnye Metally. 2019. No.1. P. 13—19. DOI: 10.17580/tsm.2019.01.02 (In Russ.).
15. Vigdorchik E.M., Shneerson Ya.M., Zhmarin E.E., Shpaer V.M. Study of single-stage and dual-stage routes of autoclave leaching of zinc concentrates via mathematical simulation. Tsvetnye Metally. 2004. No. 12. C. 136—142 (In Russ.).
16. Lampinen M., Laari A., Turunen I. Kinetic model for direct leaching of zinc sulphide concentrates at high slurry and solute concentration. Hydrometallurgy. 2015. No. 153. P. 160—169. DOI: 10.1016/j.hydromet.2015.02.012.
17. Owusu G., Dreisinger D.B., Peters E. Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite. Hydrometallurgy. 1995. Vol. 38. No. 3. P. 315—324. DOI: 10.1016/0304-386X(94)00061-7.
18. Tian L., Zhang T.A., Liu Y., Lv G.Z., Tang, J.J. Oxidative acid leaching of mechanically activated sphalerite. Canad. Metal. Quarterly. 2018. Vol. 57. No. 1. P. 59—69. DOI: 10.1080/00084433.2017.1367884.
19. Liu Y., Fan Y.-Y., Qi J.-F., Tian L., Zhang T.-A. Research on sulfur conversion behavior in oxygen pressure acid leaching process of high indium sphalerite. Miner., Met. Mater. Ser. 2018. Vol. 2. P. 199—208. DOI: 10.1007/978-3-319-72131-6_18.
20. Owusu G., Peters E., Dreisinger D.B. Surface tensions and contact angles due to lignin sulphonates in the system: Liquid sulphur, aqueous zinc sulphate and zinc sulphide. Canad. J. Chem. Eng. 1992. Vol. 70. No. 1. P. 173—180. DOI: 10.1002/cjce.5450700125.
21. Owusu G., Dreisinger D.B., Peters E. Interfacial effects of surface-active agents under zinc pressure leach conditions. Metal. Mater. Trans. B. 1995. Vol. 26. No. 1. P. 5— 12. DOI: 10.1007/BF02648972.
22. Barin I. Thermochemical data of pure substances. 2-nd ed. Weinheim, Basel: VCH Verlagsgesellschaft, 1993.
Review
For citations:
Solovyeva G.V., Kolmachikhina E.B., Mamyachenkov S.V. Thermodynamic analysis of zinc sulfide dissolution stoichiometry in sulfuric acid solution with oxygen. Izvestiya. Non-Ferrous Metallurgy. 2020;(4):22-28. (In Russ.) https://doi.org/10.17073/0021-3438-2020-4-22-28