Two-stage hydrochloric leaching of oxidized nickel ore of the Serovsky deposit
https://doi.org/10.17073/0021-3438-2020-4-16-21
Abstract
Significant reserves of oxidized nickel ores are concentrated in the Ural region, in the deposits of various sizes that are mined by open-pit method. Ore is rather loose, which makes the cost of production relatively low. At the same time, the technologies employed at Ural nickel plants fail to meet the energy conservation requirements, and they are environmentally unfriendly and unprofitable. The paper proposes a two-stage hydrometallurgical technology for processing oxidized nickel ores from the Serovsky deposit. The composition of investigated ore is, wt.%: 1.01 Ni, 0.031 Co, 15.32 Fetotal, 8.51 Al2O3, 21.76 MgO, 43.97 SiO2. The phase composition of the sample was determined by powder diffraction on the XRD-7000 X-ray diffractometer (Shimadzu, Japan). Serpentine Mg6[Ni, Si4O10](OH)8 and nimite (Ni, Mg, Al)6(Si, Al)4О10(OH)8 were identified as the main nickel-containing minerals. Nickel enters the crystal lattice of silicates and replaces magnesium and iron isomorphically, which significantly complicates the disintegration of such minerals by the hydrometallurgical method. The paper provides the results of laboratory studies into atmospheric ore leaching with hydrochloric acid at the first stage and autoclave leaching of the obtained slurry at the second stage depending on temperature, leaching time and acid consumption. The total (in two stages) extraction into the solution was, wt.%: 82 Ni, 73.6 Co, 22 Fe, 22 Mg, 50.4 Al. Hydrochloric acid is almost completely consumed under these conditions with residual acid concentration of about 3 g/dm3. The autoclave slurry has good filterability. Cake composition after autoclave leaching is as follows, wt.%: 0.35 Ni, 0.01 Co, 12 Fetotal, 10.63 Mg, 1.2 Al, 55 SiO2.
About the Authors
O. B. KolmachikhinaRussian Federation
Cand. Sci. (Eng.), Associate prof., Department of metallurgy of non-ferrous metals (MNFM)
620002, Yekaterinburg, Mira str., 19
O. Yu. Makovskaya
Russian Federation
Cand. Sci. (Eng.), Associate prof., Department of MNFM
620002, Yekaterinburg, Mira str., 19
V. G. Lobanov
Russian Federation
Cand. Sci. (Eng.), Associate prof., Department of MNFM
620002, Yekaterinburg, Mira str., 19
S. E. Polygalov
Russian Federation
Assistant lecturer, Department of MNFM
620002, Yekaterinburg, Mira str., 19
References
1. Mudd G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol. Rev. 2010, Vol. 38, P. 9—6. DOI: 10.1016/j.oregeorev.2010.05.003.
2. Leont’ev L.I., Zhuchkov V.I., Zhdanov A.V., Dashevskii V.Y. Ferroalloy production in Russia. Steel in Translation. 2015. Vol. 45. No. 10. P. 773—777.
3. Vershinin A.S. Nickel deposits in the Urals. Gorniy Journal. 1996. No. 8-9. P. 23-57 (In Russ.).
4. Mishchenko V.N., Kniss V.A., Kobelev V.A., Avdeev A.S., Poljanski L.I. Preparation of oxidized nickel ores for smelting. Ekaterinburg: Ural’skoe otdelenie RAN, 2005.
5. Caron M.H. Fundamental and practical factors in ammonia leaching of nickel and cobalt ores. J. Metals. 1950. Vol. 188. P. 67—90.
6. Rhamdhani M. A., Chen J., Hidayat T., Jak E., Hayes P. Advances in research on nickel production through the Caron process. Proc. EMC. 2009. P. 899—913.
7. Panda L., Rao D.S., Mishra B.K., Das B. Characterization and dissolution of low-grade ferruginous nickel lateritic ore by sulfuric acid. Mining, Metallurgy & Exploration. 2014. Vol. 31. Р. 57—65. DOI: 10.1007/BF03402349.
8. Ucyildiz A., Girgin I. High pressure sulphuric acid leaching of lateritic nickel ore. Physicochemical Problems of Mineral Processing. 2017. Vol. 53. Iss. 1. P. 475—488. DOI: 10.5277/ppmp170137.
9. Dry M., Harris B. Nickel laterite and three mineral acids. Proc. of ALTA Nickel and Cobalt Conf. Perth, Australia, 2012. P. 20—35.
10. Kaya S., Topkaya Y. High pressure acid leaching of a refractory lateritic nickel ore. Miner. Eng. 2011. Vol. 24. Iss. 11. P. 1188—1197. DOI: 10.1016/j.mineng.2011.05.004.
11. Naftal M.N., Dyachenko V.T., Serova N.V., Bryukvin V.A., Lysykh M.P. The oxidized nickel ores are the prospective source of mineral raw material for the increasing of nickel and cobalt production on OJSC «MMC «Norilsk Nickel». Tsvetnye Metally. 2012. No. 6. P. 25—28 (In Russ.).
12. Stopic S.R., Friedrich B.G. Hydrometallurgical processing of nickel lateritic ores. Vojnotehnički glasnik. 2016. Vol. 64. No. 4. P. 1033—1047. DOI: 10.5937/vojtehg64-10592.
13. Mccarthy F., Brock G. Direct nickel process — breakthrough technology. Proc. of Conf. «Processing of Nickel Ores & Concentrates ‘15». Karawara, 2015. P. 1—10.
14. Ma B., Wang C., Yang W., Yang B., Zhang Y. Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid. Miner. Eng. 2013. Vol. 45. P. 151—158. DOI: 10.1016/j.mineng.2013.02.009.
15. Ma B., Yang W., Yang B., Wang C., Chen Y., Zhang Y. Pilot-scale plant study of the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy. 2015. Vol. 155. P. 88—94. DOI: 10.1016/j.hydromet.2015.04.016.
16. Kyle J. Nickel laterite processing technologies — where to next? Proc. of ALTA Nickel/Cobalt/Copper Conf. Perth, Australia, 2010. http://researchrepository.murdoch.edu.au/4340.
17. Kalashnikova M.I., Tsymbulov L.B., Naboychenko S.S., Kolmachikhina O.B. Innovative processing applicable to the oxidized nickel ores found in the Urals region. Tsvetnye Metally. 2019. No. 8. P. 4—12 (In Russ.). DOI: 10.17580/tsm. 2019.08.01.
18. Rice N.M. A hydrochloric acid process for nickeliferous laterites. Miner. Eng. 2016. Vol. 88. Iss. 15. P. 28—52. DOI: 10.1016/j.mineng.2015.09.017.
19. Djuivestein V., Lastra M., Liu Kh. Method of nickel recovery from Ni—Fe—Mg laterite ore with high content of magnesium: Pat. 2149910C1 (RF). 1996 (In Russ.).
20. Kolmachikhina O.B., Kolmachikhin V.N., Naboychenko S.S. Study of hydrochloric leaching of oxidized nickel ore of the Serovskoye deposit. Metallurgist. 2015. Vol. 59. No. 1-2. P. 87—89.
21. Whittington B.I., Muir D. Pressure acid leaching of nickel laterites: A review. Miner. Process. Extr. Metаll. Rev. 2000. Vol. 21. P. 527—599. DOI: 10.1080/08827500008914177.
22. Selivanov E.N., Sergeeva S.V., Udoeva L.Yu., Pankratov A.A. Nickel distribution in the Serovskoye deposit oxide nickel ore phase constituents. Obogashcheniye rud. 2012. No. 5. Р. 46—50 (In Russ.).
23. Molodykh A.S., Vaytner V.V., Nikonenko E.A., Gabdullin A.N., Katyshev S.F. A method of producing nickel concentrate from Serov’s nickel ore deposit. Butlerovskie soobshcheniya. 2016. Vol. 47. No. 9. P. 67—72 (In Russ.).
Review
For citations:
Kolmachikhina O.B., Makovskaya O.Yu., Lobanov V.G., Polygalov S.E. Two-stage hydrochloric leaching of oxidized nickel ore of the Serovsky deposit. Izvestiya. Non-Ferrous Metallurgy. 2020;(4):16-21. (In Russ.) https://doi.org/10.17073/0021-3438-2020-4-16-21