Centrifugal metallothermic SHS of cast Co–Cr–Fe–Ni–Mn–(X) high-entropy alloys
https://doi.org/10.17073/0021-3438-2020-3-59-71
Abstract
A relatively new and promising approach to the development of new metal alloys with a view to replacing a number of existing commercially used alloys is the use of a new alloying concept based on the development of metal materials comprising several basic elements taken in approximately equal atomic concentrations. Such materials are called high-entropy alloys (HEA). Modern research has shown that the HEA microstructure can be formed by solid solutions with both BCC and FCC lattices, and also have ordered phases (intermetallics) in its composition. This approach to forming metal materials provides a wide range of opportunities for the development of new alloys with improved performance. Most of the current HEA research is focused on identifying a relationship between the microstructure and measured properties. Much less attention is paid to the study and development of new effective methods for HEA production. This paper investigates the possibility of obtaining HEA based on the CoCrFeNiMn-(X) system in the combustion mode using centrifugal SHS metallurgy methods. For the first time, the study made it possible to practice chemical technology methods of cast CoCrFeNiMn alloy modification directly (in situ) during synthesis by introducing alloying components into the original exothermic compounds. The microstructure and phase composition ofNiCrCoFeMn alloys obtained with the introduction ofthe Ti—Si—B(C) complex modifying additive and NiCrCoFeMn—Alx excess aluminum were analyzed. The obtained data indicated that as the Ti—Si—B(C) additive content increases, the microstructure of synthesis products is formed based on a matrix of HEA with evolving new structural elements based on carbides and Ti borides. It was found that synthesis in the combustion of alloys with a high Al concentration (x > 0.6) leads to the formation of a composite structure consisting of the NiAl-based matrix with numerous nanoscale (~100 nm) dispersive precipitates formed from the Cr and Fe based solid solution. The obtained experimental data allows us to conclude that the HEA-based materials under study and the proposed method for obtaining them to form bulk nanostructural HEA-based materials have promising prospects.
About the Authors
V. N. SaninRussian Federation
Dr. Sci. (Tech.), deputy director ISMAN.
142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8
D. M. Ikornikov
Russian Federation
Research engineer of Laboratory «SHS melts and cast materials» of ISMAN.
142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8
O. A. Golosova
Russian Federation
Cand. Sci. (Tech.), researcher of Laboratory «SHS melts and cast materials» of ISMAN.
142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8
D. E. Andreev
Russian Federation
Cand. Sci. (Tech.), senior researcher of Laboratory «SHS melts and cast materials» of ISMAN.
142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8
V. I. Yukhvid
Russian Federation
Dr. Sci. (Tech.), prof., head of Laboratory «SHS melts and cast materials», chief researcher of ISMAN.
142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8
References
1. Roger C. Reed. The superalloys: Fundamentals and applications. Cambridge — New York: Cambridge University Press, 2006. http://www.cambridge.org/9780521859042.
2. Kolobov Yu.R., Kablov E.N., Kozlov E.V Structure and properties of intermetallic materials with nanophase hardening: monograph. Moscow: MISIS, 2008 (In Russ).
3. Yeh J. W, Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun TT, Tsau C.H., ChangS.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004. Vol. 6. No. 5. P. 299—303.
4. Yeh J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 2006. Vol. 31. No. 6. P. 633—648.
5. Gorr B., Azim M., Christ H.-J., Mueller T, Schliephake D., Heilmaier M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 2015. Vol. 624. No. 9. P. 270—278.
6. Tong C.J., Chen M.R., Chen S.K., Yeh J.W., Shun T.T., Lin S.J., Chang S.Y. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A. 2005. Vol. 36. P. 1263—1271.
7. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017. Vol. 122. P. 448—511. DOI: 10.1016/j.actamat.2016.08.081.
8. Gorsse S., Miracle D.B., Senkov O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017. Vol. 135. P. 177—187. DOI: 10.1016/j.actamat.2017.06.027.
9. Tsai M.-H., Yeh J.-W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014. Vol. 2. No. 3. P. 107—123. DOI:10.1080/21663831.2014.912690.
10. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014. Vol. 61. P. 1— 93. DOI: 10.1016/j.pmatsci.2013.10.001.
11. Tsai Ming-Hung. Physical properties of high entropy alloys. Entropy. 2013. Vol. 15. No. 12. P. 5338—5345
12. Yeh Jien-Wei, Gao M.C., Yeh J-W, Liaw P.K., Zhang Y Overview of high-entropy alloys. In: High-entropy alloys fundamentals and applications. Switzerland: Springer, 2016. P. 1—19.
13. Miracle D.B., Miller J.D., Senkov O.N., Woodward Ch., Uchic M.D., Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy. 2014. Vol. 16. No. 1. P. 494—525.
14. Zhijun Wang, Sheng Guo, Qing Wang, Zhiyuan Liu, Jin-cheng Wang, Yong Yang, Liu C.T. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics. 2014. Vol. 53. P. 183—186.
15. Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010. Vol. 18. No. 9. P. 1758—1765. DOI: 10.1016/j.intermet.2010.05.014.
16. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011. Vol. 19. No. 5. P. 698—706. DOI: 10.1016/j.intermet.2011.01.004.
17. Juan C.-Ch., Tseng K.-K, Hsu W.-L., Tsai M.-H., Tsai Ch.-W, Lin Ch.-M., Chen S.-K., Lin S.-J., Yeh J.-W. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 2016. Vol. 175. P. 284—287.
18. Senkov O.N., Woodward C.F. Microstructure and properties of a refractory NbCrMo0 5Ta0 5TiZr alloy. Mater. Sci. Eng. A. 2011. Vol. 529. No. 1. P. 311—320. DOI: 10.1016/j.msea.2011.09.033.
19. Senkov O.N., Senkova S.V, Woodward C., Miracle D.B. Low-density, refractory multi-principal element alloys of the Cr—Nb—Ti—V—Zr system: Microstructure and phase analysis. Acta Mater. 2013. Vol. 61. No. 5. P. 1545— 1557. DOI: 10.1016/j.actamat.2012.11.032.
20. Senkov O.N., Senkova S.V, Miracle D.B., Woodward C. Mechanical properties of low-density, refractory multiprincipal element alloys of the Cr—Nb—Ti—V—Zr system. Mater. Sci. Eng. A. 2013. Vol. 565. P. 51—62. DOI: 10.1016/j.msea.2012.12.018.
21. Han Z.D., Luan H.W, Liu X., Chen N, Li X.Y., Shao Y, Yao K.F. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A. 2018. Vol. 712. No. 17. P. 380—385. doi:10.1016/J.MSEA.2017.12.004.
22. Guo N.N., Wang L., Luo L.S., Li X.Z., Chen R.R., Su Y.Q., Guo J.J., Fu H.Z. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi) BCC/M5Si3 in-situ compound. J. Alloys Compd. 2016. Vol. 660. P. 197—203. DOI: 10.1016/j.jallcom.2015.11.091.
23. Juan C.-C, Tsai M.-H, Tsai C.-W, Lin C.-M, Wang W.-R., Yang C.-C., Chen S.-K., Lin S.-J., Yeh J.-W. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015. Vol. 62. P. 76—83. DOI: 10.1016/J.INTERMET.2015.03.013.
24. Stepanov N.D., Yurchenko N.Yu, Shaysultanov D.G., Sali-shchev G.A., Tikhonovsky M.A. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 2015. Vol. 31. P. 1184-1193. DOI: 10.1179/1743284715Y.0000000032.
25. Otto F, Dlouhy A., Somsen C, Bei H, Eggeler G, George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013. Vol. 61. No. 15. P. 5743-5755. DOI: 10.1016/j.actamat.2013.06.018.
26. Gludovatz B., George E.P., Ritchie R.O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM. 2015. Vol. 67. No. 10. P. 22622270. DOI: 10.1007/s11837-015-1589-z
27. Otto F., Dlouhy A., Pradeep K.G., Kubenova M., Raabe D., Eggeler G., George E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016. Vol. 112. DOI: 10.1016/j.actamat.2016.04.005.
28. Zhu G., Liu Y., Ye J. Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 2014. Vol. 44. P. 35-41. DOI: 10.1016/j.ijrmhm.2014.01.005.
29. Stepanov N.D., Yurchenko N.Y, Sokolovsky V.S., Tik-honovsky M.A., Salishchev G.A. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 2015. Vol. 161. P. 136-139. DOI: 10.1016/j.matlet.2015.08.099.
30. Sanin V.N., Ikornikov D.M., Andreev D.E., Yukhvid VI. Centrifugal SHS metallurgy of nickel aluminide based eutectic alloys. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 6. P. 613-619. DOI: 10.3103/S1067821214060212.
31. Sanin V, Andreev D., Ikornikov D., Yukhvid V. Cast intermetallic alloys and composites based on them by combined centrifugal casting - SHS Process. Open J. Met. 2013. Vol. 3. No. 2B. P. 12-24. DOI: 10.4236/ojmetal.2013.32A2003.
32. Sanin V.N., Yukhvid V.I., Ikornikov D.M., Andreev D.E., Sa-chkova N.D., Alymov M.I. SHS metallurgy of cast high-entropy alloys based on transition metals. Doklady Academii nauk. 2016. Vol. 470. No. 4. P. 421-426 (In Russ.).
33. Klimova M., Stepanov N., Shaysultanov D., Chernichen-ko R., Yurchenko N., Sanin V, Zherebtsov S. Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling. Materials. 2018. Vol. 11. No. 53. https://doi.org/10.3390/ma11010053
34. Kashaev N., Ventzke V, Stepanov N., Shaysultanov D., Sanin V, Zherebtsov S. Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Interme-tallics. 2018. Vol. 96. P. 63-71. https://doi.org/10.1016/j.intermet.2018.02.014.
Review
For citations:
Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal metallothermic SHS of cast Co–Cr–Fe–Ni–Mn–(X) high-entropy alloys. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):59-71. (In Russ.) https://doi.org/10.17073/0021-3438-2020-3-59-71