Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

The effect of Ti and TiH2 additives on structure and mechanical properties of copper alloys for diamond cutting tools

https://doi.org/10.17073/0021-3438-2020-3-51-58

Abstract

The study covers the effect of titanium and titanium hydride additives on the structure, mechanical properties, and wear resistance of copper alloys to be used as a binder for diamond cutting tools. Cu-Ti and Cu–TiH2powder mixtures were obtained by mechanical alloying in a planetary ball mill. This treatment made it possible to obtain single-phase copper-based solid solution powders in the Cu-Ti system and two-phase copper-based powders with uniformly distributed submicron TiH2 particles in the Cu-TiH2 system. It was found that Cu-2.5%Ti and Cu-10%TiH2 compact samples feature by maximum mechanical properties (2.0-3.5 times higher than that of pure copper). Hardening in these alloys is implemented by the solid-solution mechanism and due to the Cu3Ti3O phase formation. Grains of this phase have a higher dispersion in alloys with TiH2 used as a titanium-containing additive. This provides a high value ofbending strength (920 MPa) and hardness (114 HB). According to the results of comparative tribological tests, it was found that Cu—10%TiH2 samples have the best wear resistance. After pin-on-disk tests, the equivalent wear of these samples was an order of magnitude less than that of pure copper and 5 times lower than that of Cu—2.5%Ti samples.

About the Authors

P. A. Loginov
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Cand. Sci. (Tech.), research scientist of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



S. Vorotilo
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Engineer of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



D. A. Sidorenko
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Cand. Sci. (Tech.), research scientist of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



Yu. V. Lopatina
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Laboratory assistant of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



A. Okubaev
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Laboratory assistant of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



N. V. Shvyndina
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Engineer of the Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



E. A. Levashov
Scientific-Educational Centre of SHS of MISIS—ISMAN
Russian Federation

Dr. Sci. (Tech.), prof., acad. of Russian Academy of Natural Science, chair of the Department of powder metallurgy and functional coatings of National University of Science and Technology «MISIS», head of Scientific-Educational Centre of SHS of MISIS—ISMAN.

119049, Moscow, Leninskii pr., 4



References

1. Zhang Z.-Y., Xiao B., Duan D.-Z., Wang B., Liu S.-X. Investigation on the brazing mechanism and machining performance of diamond wire saw based on Cu—Sn—Ti alloy. Int. J. Refract. Met. H. 2017. Vol. 66. P. 211—219.

2. Soltani H.M., Tayebi M. Determination of wear parameters and mechanisms of diamond/copper tools in marble stones cutting. Int. J. Refract. Met. H. 2020. Vol. 87. No. 105172.

3. Polushin N.I., BogatyrevA.V., LaptevA.I., Sorokin M.N. Influence of the matrix composition, structure, and properties on the service life of a diamond drilling tool. Russ. J. Non-Ferr. Met. 2017. Vol. 58. Iss. 2. P. 174-179.

4. Sharin P.P., Akimova M.P., Popov V.I. Correlation of the diamond/matrix interphase zone structure with tool efficiency obtained by technology combining metallization of diamonds with matrix sintering. Inorg. Mater. Appl. Res. 2019. Vol. 10. Iss. 6. P. 1348-1356.

5. Loginov P.A., Levashov E.A., Kurbatkina V.V., Zaitsev A.A., Sidorenko D.A. Evolution of the micro structure of Cu-Fe-Co-Ni powder mixtures upon mechanical alloying. Powder Technol. 2015. Vol. 276. P. 166-174.

6. Tillmann W., Ferreira M., Steffen A., Raster K., Moller J., Bieder S., Paulus M., Tolan M. Carbon reactivity of binder metals in diamond-metal composites - characterization by scanning electron microscopy and X-ray diffraction. Diam. Relat. Mater. 2013. Vol. 38. P. 118-123.

7. Qiu W.Q., Liu Z.W, He L.X., Zeng D.C., Mai Y.-W. Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)-diamond composite interlayer. Mater. Lett. 2012. Vol. 81. P. 155-157.

8. Vorotilo S., Loginov P., Mishnaevsky L., Sidorenko D., Levashov E. Nanoengineering of metallic alloys for machining tools: Multiscalecomputational and in situ TEM investigation of mechanisms. Mat. Sci. Eng. A. 2019. Vol. 739. P. 480-490.

9. Sokolov E.G., Ozolin A. V. The influence of temperature on interaction of Sn-Cu-Co-W binders with diamond in sintering the diamond-containing composite materials. Mater. Today Proc. 2018. Vol. 5. Iss. 12. Pt. 3. P. 26038-26041.

10. Loginov P.A., Kurbatkina V.V., Levashov E.A., Lopatin V. Yu., Zaitsev A.A., Sidorenko D.A., Rupasov S.I. Peculiarities of the influence of nanomodification on the properties of the Cu-Fe-Co-Ni binder for a diamond tool. Russ. J. Non-Ferr. Met. 2015. Vol. 56. Iss. 5. P. 567-574.

11. Huang S.-F., Tsai H.-L., Lin S.-T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Mater. Chem. Phys. 2004. Vol. 84. Iss. 2-3. P. 251-258.

12. Li X., Ivas T., Spierings A.B., Wegener K., Leinenbach C. Phase and microstructure formation in rapidly solidified Cu-Sn and Cu-Sn-Ti alloys. J. Alloys Compd. 2018. Vol. 735. P. 1374-1382.

13. Gan J, Gao H., Wen S., Zhou Y, Tan S., Duan L. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting. Int. J. Refract. Met. H. 2020. Vol. 87. No. 105144.

14. Malzahn Kampe J.C., Cooper K.P., Ayers J.D. Deformation processed composite wires from gas-atomized Cu-Cr-Ag powder. Scr. Metall. Mater. 1990. Vol. 24. Iss. 9. P. 1783-1788.

15. Manakova O.S., Kurbatkina V.V., Levashov E.A. Structure and properties of the precipitation-hardening Ti-Nb-C material with a binder. Russ. J. Non-Ferr. Met. 2015. Vol. 56. Iss.4. P. 486-491.

16. KuskovK.V, RogachevA.S., VadchenkoS.G., ShkodichN.F., RouvimovS., ShchukinA.S., IllarionovaE.V, Kudryashov V.A., Mukasyan A.S. Resistance of microcrystalline and nanocrystalline Cu/Cr pseudo-alloys to vacuum discharge. J. Alloys Compd. 2018. Vol. 750. P. 811-818.

17. RogachevA.S., KuskovK.V, Shkodich N.F., MoskovskikhD.O., Orlov A.O., Usenko A.A., Karpov A.V, Kovalev I.D., Muka-syan A.S. Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by Spark Plasma Sintering. J. Alloys Compd. 2016. Vol. 688. Pt. A. P. 468- 474.

18. Annenkov M., Blank V, Kulnitskiy B., Larionov K., Ovsyannikov D., Perezhogin I., PopovM., Sorokin P. Boron carbide nanoparticles for high-hardness ceramics: Crystal lattice defects after treatment in a planetary ball mill. J. Eur. Ceram. Soc. 2017. Vol. 37. Iss. 4. P. 1349-1353.

19. Shkodich N.F., Spasova M., Farle M., Kovalev D.Yu., Ne-papushevA.A., KuskovK.V, Vergunova Yu.S., Scheck Yu.B., Rogachev A.S. Structural evolution and magnetic properties of high-entropy CuCrFeTiNi alloys prepared by high-energy ball milling and spark plasma sintering. J. Alloys Compd. 2020. Vol. 816. No. 152611.

20. Loginov P.A., Sidorenko D.A., Shvyndina N.V, Sviridova T.A., Churyumov A.Yu., Levashov E.A. Effect of Ti and TiH2 doping on mechanical and adhesive properties of Fe-Co-Ni binder to diamond in cutting tools. Int. J. Refract. Met. H. 2019. Vol. 79. P. 69-78.

21. Jimenez C., Garcia-Moreno F., Rack A., Tucoulou R., Klaus M., Pfretzschner B., Rack T., Cloetens P., Banhart J. Partial decomposition of TiH2 studied in situ by energy-dispersive diffraction and ex situ by diffraction microtomography of hard X-ray synchrotron radiation. Scr. Mater. 2012. Vol. 66. Iss. 10. P. 757-760.

22. Jimenez C., Garcia-Moreno F., Pfretzschner B., Klaus M., Wollgarten M., Zizak I., Schumacher G., Tovar M., Banhart J. Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction. Acta Mater. 2011. Vol. 59. Iss. 16. P. 6318-6330.

23. Luo X., Yang Y.Q., Liu Y.C., Ma Z.J., Yuan M.N., Chen Y. The fabrication and property of SiC fiber reinforced copper matrix composites. Mat. Sci. Eng. A. 2007. Vol. 459. Iss. 1-2. P. 244-250.

24. Salvo C., Mangalaraja R.V, Udayabashkar R., Lopez M., Aguilar C. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. J. Alloys Compd. 2019. Vol. 777. P. 309-316.


Review

For citations:


Loginov P.A., Vorotilo S., Sidorenko D.A., Lopatina Yu.V., Okubaev A., Shvyndina N.V., Levashov E.A. The effect of Ti and TiH2 additives on structure and mechanical properties of copper alloys for diamond cutting tools. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):51-58. (In Russ.) https://doi.org/10.17073/0021-3438-2020-3-51-58

Views: 606


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)