Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Experimental research of the stress-strain state when drawing aluminum-copper bimetal parts rectangular in plan

https://doi.org/10.17073/0021-3438-2020-3-23-31

Abstract

The stress-strain state of the aluminum-copper bimetal blank flange was studied when extracting boxes rectangular in plan. The studies were carried out using the grid method with assumptions about the material isotropy and incompressibility; uniform deformation within each cell; monotonous deformation, plane stress and three-dimensional strain state, while elastic strains were neglected. A CAD modeling program was used to minimize coordinate grid measurement errors and reduce the time for processing the information obtained. The blanks were rectangles of certain sizes with an explosion-welded AD aluminum and M4 copper layers subjected to preliminary heat treatment before the drawing operation. Rectangular blanks were successively drawn to a height of 10 mm with grid and test sample thickness measurements after drawing. Blank samples were photographed with the same focal length and loaded into the application program. In the program, coordinate points were applied to grid nodes with the distances and coordinates of these points measured before and after strain. According to measurement results, the highest strain was observed in the blank corner areas where compressive stresses increased from the angle bisector to the walls. These stresses led to bimetallic blank stratification and corrugations formed along the copper layer. 20 blanks were drawn, and corrugation was observed on the flange in each case. Varying the hold-down pressure from 0.25 to 0.5 MPa gave no positive results. The highest strain intensity is observed at the end part of the box flange, and this value decreases by 20 % at the approach to the die hole. The effect of angular shear stresses leads to a discontinuity in the transition zone featuring by the presence of an intermetallic layer with reduced plastic properties.

About the Authors

T. V. Haikova
Kremenchuk Mykhailo Ostrohradskyi National University (KMONU)
Ukraine

Cand. Sci. (Tech.), associate prof. of the Department of engineering technology KMONU.

39600, Kremenchuk, Pershotravneva str., 20



R. H. Puzyr
Kremenchuk Mykhailo Ostrohradskyi National University (KMONU)
Ukraine

Dr. Sci. (Tech.), associate prof. of the Department of engineering technology of KMONU.

39600, Kremenchuk, Pershotravneva str., 20



R. V. Levchenko
Kremenchuk Mykhailo Ostrohradskyi National University (KMONU)
Ukraine

Levchenko R.V. — Cand. Sci. (Tech.), senior lecturer of the Department of engineering technology of KMONU.

39600, Kremenchuk, Pershotravneva str., 20



References

1. Gurevich L.M., Volchkov V.M., Trykov Yu.P., Kiselev O.S. Simulation of deep drawing tubular coupling pieces from layered titanium-aluminium plates. Izvestiya Vuzov. Tsvet-naya Metallurgiya (Universities’ Proceedings. Non-Ferrous Metallurgy). 2014. No. 4. P. 30—35 (In Russ.).

2. Haikova T, Puzyr R., Dragobetsky V, Symonova A., Vaky-lenko R. Finite-element model of bimetal billet strain obtaining box-shaped parts by means of drawing. In: Advances in design, simulation and manufacturing II: Proc. 2nd Int. conf. on design, simulation, manufacturing: The innovation exchange (11—14 June 2019). Lutsk, Ukraine: Springer, 2019. P. 85—94. DOI https://doi.org/10.1007/978-3-030-22365-6_9.

3. Boris R., Kholiavik O., Vyshnevsky P. Calculation of stre-ssed-deformed state during drawing with the thawing of two-layer metal. Naukovii oglyad. 2017. No. 7. P. 40—47 (In Ukr.).

4. Hassan M.A., AhmedK.I.E., Takakura N. A developed process for deep drawing of metal foil square cups. J. Mater. Process. Technol. 2012. No. 212 (1). P. 295—307. DOI: 10.1016/j.jmatprotec.2011.09.015.

5. Harpell E.T., Worswickb M.J., Finn M., Jain M., Martin P. Numerical prediction of the limiting draw ratio for aluminum alloy sheet. J. Mater. Process. Technol. 2000. No. 100. P. 131—141.

6. Gavas M., Izciler M. Effect of blank holder gap on deep drawing of square cups. Mater. Design. 2007. No. 28. P. 1641—1646.

7. Kalyuzhnyi O.V., Kalyuzhnyi V.L. Intensification of forming processes of cold sheet stamping. Kyiv: Sik Group Ukraine LLC, 2015.

8. Yan G.X., WangX.Y, DengL. A study of hole flanging-upsetting process. Adv. Mater. Res. 2014. Vol. 939. P. 291—298.

9. Luo J.C. Study on stamping-forging process and experiment of sheet metal parts with non-uniform thickness. Wuhan: Huazhong Univ. Sci. Technol. 2011. No. 51. Р. 49—54.

10. Puzyr R., Savelov D., Argat R., Chernish A. Distribution analysis of stresses across the stretching edge of die body and bending radius of deforming roll during profiling and drawing of cylindrical workpiece. Metall. Min. Ind. 2015. No. 1. Р. 27—32.

11. Popov E.A. Fundamentals of the theory of sheet punching. Moscow: Mashinostroenie, 1977 (In Russ.).

12. Wang X.Y., Ouyang K., Xia J.C. FEM analysis of drawing-thickening technology in stamping-forging hybrid process. Forg. Stamp. Technol. 2009. No. 34(4). Р. 73—78.

13. Comsa D-S., Banabic D. Numerical simulation of sheet metal forming processes using a new yield criterion. Key Eng. Mater. 2007. No. 344. Р. 833—840.

14. Puzyr R., Haikova T, Majernik J., Karkova M., Kmec J. Experimental study of the process of radial rotation profiling of wheel rims resulting in formation and technological flattening of the corrugations. Manuf. Technol. 2018. No. 18 (1). Р 106—111.

15. Asemabadi M., Sedighi M., Honarpisheh M. Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal. Mater. Sci. Eng. 2012. No. 558. Р. 144—149.

16. Khosravifard A., Ebrahimi R. Investigation of parameters affecting interface strength in Al/Cu clad bimetal rod extrusion process. Mater. Design. 2010. No. 31. Р. 493—499.

17. Kapifiski S. Analytical and experimental analysis of deep drawing process for bimetal elements. J. Mater. Process. Technol. 1996. No. 60. Р. 197—200.

18. Romanovskii V.P. Handbook of cold stamping. Leningrad: Mashinostroenie, 1976 (In Russ.).

19. Akbari-Mousavi S.A.A., Barrett L.M., Al-Hassani S.T.S. Explosive welding of metal plates. J. Mater. Process. Technol. 2008. Vol. 202. Iss. 1—3. Р. 224—239.

20. ZagirnyakM.V, Drahobetskyi V.V. New methods of obtaining materials and structures for light armor protection. In: Int. Conf. Military Technologies (ICMT) (Brno, Czech Republic, 19-21 May 2015). 2015. Vol. 1. P. 705-710.

21. Dragobetsky V, Zagoryansky V, Voronin A. Process modeling of elastic-plastic deformation of steel-aluminum compositions produced by impact bonding. Metall. Min. Ind. 2015. Iss. 9. Р. 1186-1189.

22. Isadarea A.D., Aremob B., Adeoyec M.O., Olawalec O.J., Shittu M.D. Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Mater. Res. 2013. No. 16(1). Р. 190-194. DOI: 10.1590/S1516-1439201.2005.000167.

23. Shwe W.H.A., Kay T.L., Waing K.K.O. The effect of ageing treatment of aluminum alloys for fuselage structure-light aircraft. World Acad. Sci., Eng. Technol. 2008. No. 46. P. 696-699.

24. Mohammad T., Esmaeil E. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater. Design. 2010. No. 32(2). P. 1594-1599. http://dx.doi.org/10.1016/j.matdes.2010.09.001.

25. Li J.F., Peng Z.W. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans. Nonferr. Met. Soc. China. 2008. No. 18(4). P. 755-762. http://dx.doi.org/10.1016/ S1003-6326(08)60130-2.

26. Roberto B.F., Terence G.L. Using severe plastic deformation for the processing of advanced engineering materials. Mater. Trans. 2009. No. 50(7). P. 1613-1619. http://dx.doi.org/10.2320/matertrans.MF200913.

27. Miyazaki S., Kumai S., Sato A. Plastic deformation of Al-Cu-Fe quasicrystals embedded in A^Cu at low temperatures. Mater. Sci. Eng. 2005. No. 300 (5). P. 400-401.

28. Chen C.Y., Hwang W-S. Effect of annealing on the interfacial structure of aluminum-copper joints. Mater. Trans. 2007. Vol. 48. No. 7. P. 1938-1947.

29. Mirzakouchakshirazi H., Eivani A.R., Kheirandish Sh. Effect of post-deformation annealing treatment on interface properties and shear bond strength of Al-Cu bimetallic rods produced by equal channel angular pressing. Iran. J. Mater. Sci. Eng. 2017. Vol. 14. No. 4. P. 25-34. DOI: 10.22068/ijmse.14.4.25.

30. PuzyrR., SavelovD., Shchetynin V., LevchenkoR., Haikova T, Kravchenko S., Yasko S., Argat R., Sira Y., Shchipkovakyi Y. Development of a method to determine deformations in the manufacture of a vehicle wheel rim. East.-Eur. J. Enterprise Technol. 2018. Vol. 4. No. 1(94). P. 55-60. DOI:http://dx.doi.org/10.15587/1729-4061.2018.139534.

31. Andreichenko V.A. Theoretical foundations of experimental studies of plastic forming. Tula: Tul’skii. gos. univ., 2002 (In Russ.).

32. Malinin N.N. Applied theory of plasticity and creep. Mosww: Mashinostroenie, 1975 (In Russ.).

33. Puzyr R., Haikova T, Trotsko O., Argat R. Determining experimentally the stress-strained state in the radial rotary method of obtaining wheels rims. East.-Eur. J. Enterprise Technol. 2016. Vol. 4 No. 1 (82). P. 52-60. DOI: https://doi.org/10.15587/1729-4061.2016.76225.

34. Grushko A.V, Kukhar V.V., Slobodyanyuk Y.O. Phenomenological model of low-carbon steels hardening during multistage drawing. Solid State Phenomena. 2017. Vol. 265. P. 114-123. https://doi.org/10.4028/www.scientific.net/SSP.265.114.

35. Markov O., Gerasimenko O., Khvashchynskyi A., Zhytni-kov R., Puzyr R. Modeling the techological process of pipe forging without a mandrel. East.-Eur. J. Enterprise Technol. 2019. Vol. 3. No. 1(99). 42-48. DOI:http://dx.doi.org/10.15587/1729-4061.2019.167077.

36. Haikova T.V., Puzyr R.H., Naumova E.A. The results of experimental studies on the deformation of layered blanks. In: New solutions modern technologies. Har’kov: NTU «HPI», 2013. No. 42. P. 37-42 (In Ukr.).

37. Arkulis G.E., Drogobid V.G. Theory of plasticity. Mos^w: Metallurgiya, 1987 (In Russ.).

38. Hugo I. Medellin-Castillo, Pedro de J. Garcia-Zugasti, Dirk F. de Lange, Francisco J. Colorado-Alonso. Analysis of the allowable deep drawing height of rectangular steel parts. Int. J. Adv Manuf. Technol. 2013. Vol. 66. Iss. 1-4. P. 371-380. DOI 10.1007/s00170-012-4331-9.

39. Leyu W, Daxin E. Numerical simulation analysis of variable BHF drawing of rectangular cup on curve blank-holder. Mod. Manuf. Eng. 2006. No. 2. P. 73-74.

40. Ogorodnikov V.A., Derevenko I.A., Sivak R.I. On the influence of curvature of the trajectories of deformation of a volume of the material by pressing on its plasticity under the conditions of complex loading. Mater. Sci. 2018. Vol. 54. Iss. 3. P. 326-332.

41. Aliev I., Zhbankov Y., Martynov S. Forging of shafts, discs and rings from blanks with inhomogeneous temperature field. J. Chem. Technol. Metall. 2016. Vol. 51. Iss. 4. P. 393-400.

42. Yang C., Li P., Fan L. Blank shape design for sheet metal forming based on geometrical resemblance. Procedia Eng. 2014. Vol. 81. P. 1487-1492.

43. Savelov D., Dragobetsky V., Puzyr R., Markevych A. Peculiarities of vibrational press dynamics with hard-elastic restraints in the working regime of metal powders molding. Metall. Min. Ind. 2015. No. 2. P. 67-74.

44. Rabinovich S.G. Statistical methods for experimental data processing. evaluating measurement accuracy. N.Y.: Springer, 2013. P. 71-105. DOI:https://doi.org/10.1007/978-1-4614-6717-5.


Review

For citations:


Haikova T.V., Puzyr R.H., Levchenko R.V. Experimental research of the stress-strain state when drawing aluminum-copper bimetal parts rectangular in plan. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):23-31. (In Russ.) https://doi.org/10.17073/0021-3438-2020-3-23-31

Views: 543


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)