Investigation of the effect of electrolyte composition and nickel depassivating additives on the electrochemical behavior of nickel sulfide
https://doi.org/10.17073/0021-3438-2020-3-13-22
Abstract
This article deals with the hydrometallurgical technology of nickel sulfide (NiS) processing, in particular, the effect of electrolyte composition and depassivating additives on the electrochemical behavior of synthesized nickel sulfide. The kinetics and electrochemical behavior of nickel sulfide in sulfate, sulfite, chloride, bichromate, ammonia and copper-containing electrolytes were studied. Possible directions of the process of nickel sulfide anodic dissolution with the release of elemental sulfur and sulfides that contribute to surface passivation were shown. The depassivating effect of additives, in particular NaCl, KBr and K2Cr2O7 was also studied. The results of studies suggest that: potassium bichromate has a depassivating effect on NiS anodic dissolution in Na2SO4 and NH4OH; the optimum concentration of potassium bichromate is around ≈30 g/dm3; sulfide sulfur oxidizes to SO2 4- with NiS dissolution in the presence of K2Cr2O7; NiS intensively dissolves in the pure Na2SO3 solution with the formation of insoluble Ni2+ hydroxy compounds featuring structure changes with changing pH; the combined action of NH4OH and Na2SO3 causes intensive NiS dissolution with the formation of [Ni(NH3)n]2+ ammonia complexes; the presence of acid anions capable of complexation with both Cu(I) and Cu(II) in copper-containing electrolytes leads to accelerated NiS anode dissolution; the most significant anode dissolution rates are observed in case of a nitrate-bromide system; molten sulfur formed on the NiS surface completely displaces, and copper-bromide complexes dissolve the Cu2S film formed at low potentials; when 200 g/dm3 of KBr is added to 96.8 g/dm3 of Cu (NO3)2, greater NiS dissolution rates are observed than when 200 g/dm3 of NaCl is added to 67,22 g/dm3 of the CuCl2 solution.
About the Authors
A. S. KolesnikovKazakhstan
Cand. Sci. (Tech.), senior research scientist of the Department of science and production M. Auezov SKSU
160012, Shymkent, Tauke Khan ave., 5M. I. Natorhin
Russian Federation
Cand. Sci. (Chem.), research scientist of Saint-Petersburg SIT, senior research scientist of grant project AP 05132500 GU MES RK M. Auezov SKSU.
190013, St. Petersburg, Moskovskii ave., 26
E. I. Terukov
Russian Federation
Dr. Sci. (Tech.), prof. Ioffe PTI, leading researcher of grant project AP 05132500 GU MES RK of the Department of science and production of M. Auezov SKSU.
194021, St. Petersburg, Politekhnicheskaya str., 26
A. Zh. Suigenbaeva
Russian Federation
Cand. Sci. (Tech.), senior research scientist of grant project AP 05132500 GU MES RK of the Department of science and production of M. Auezov SKSU.
160012, Shymkent, Tauke Khan ave., 5
A. A. Saipov
Russian Federation
Research scientist of grant project AP 05132500 GU MES RK of the Department of science and production of M. Auezov SKSU.
160012, Shymkent, Tauke Khan ave., 5
References
1. Reznik I.D.. Ermakov G.P.. Shneerson Ya.M. Nickel. In 3 Vols. Moscow: Nauka i tekhnologiya, 2001 (In Russ.).
2. Kolesnikov A.S., Nazarbekova S.P., Baibolov K.S., Dzhol-dasova Sh.A. Thermodynamic simulation of chemical and phase transformations in the Fe2O3—NiO—CoO—C system. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities’ Proceedings. Non-Ferrous Metallurgy). 2017. No. 3. P. 37—44. https://doi.org/10.17073/0021-3438-2017-3-37-44 (In Russ.).
3. Kalashnikova M. The scientific basis of modern hydrometallurgy of Nickel and copper. Lambert Academic Publishing, 2011 (In Russ.).
4. Brauer G. Guide to inorganic synthesis. Moscow: Mir, 1985 (In Russ.).
5. Seggiania M, Vitoloa S, D’Antoneb S. Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin. Hydrometallurgy. 2006. Vol. 81. No. 1. P. 9—14.
6. Alibhai K.A.K., Dudeney A.W.L., Leak D.J., Agatzini S, Tzeferis P. Bioleaching an bioprecipitation of nicel and iron iron from laterites. FEMS Microbiol. Rev. 1993. Vol. 1—3. Р. 87—96.
7. Kasikov A.G., Kshumaneva E.S., Maksimov VI. The use of elemental sulfur for the preparation of the flotation modifier of copper-Nickel ores. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities’ Proceedings Non-Ferrous Metallurgy). 2006. No. 2. P. 16—21 (In Russ.).
8. Kolesnikov A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 1. Р 1—5.
9. Kshumaneva E.C., Kasikov A.G. Leaching of carbonyl Nickel synthesis residues with iron (III) chloride solutions. Zhurnal prikladnoi khimii. 2007. Vol. 80. No. 4. P. 549—554 (In Russ.).
10. Kolesnikov A.S., Sergeeva I.V, Botabaev N.E., Al’zhano-va A.Zh, Ashirbaev Kh.A. Chemical and phase transitions in oxidized manganese ore in the presence of carbon. Steel Transl. 2017. Vol. 47. No. 9. P. 605—609. DOI: 10.3103/S0967091217090078.
11. Chanturiya V, Makarov V, Fors ling W, Makarov D, Va-sil’eva T, Trofimenko T, Kuznetsov V The effect of crys-tallochemical peculiarities of nickel sulphide minerals on flotation of copper-nickel ore. Int. J. Miner. Process. 2004. Vol. 74. No. 1-4. P. 289-301. DOI: 10.1016/j.minpro.2004.02.001.
12. Kolesnikov A.S., Sergeeva I.V, Botabaev N.E., Al'zhano-va A.Zh., Ashirbaev Kh.A. Thermodynamic simulation of chemical and phase transformations in the system of oxidized manganese ore — carbon. Izvestiya Vuzov. Chernaya Metallurgiya. 2017. Vol. 60. No. 9. P. 759—765 (In Russ.).
13. McDonald C.E. Chlorosulfuric аcid. In Kirk-Othmer encyclopedia of chemical technology. 5th ed. Vol. 6. N.Y.: John Wiley & Sons, 2006.
14. Yu D., Torstein A., Utigard T., Barati M. Fluidized bed selective oxidation sulfation roasting of nickel sulfide concentrate. Part I: Oxidation roasting. Metall. Mater. Trans. B. 2014. Vol. 45. P. 653—661.
15. Yu D., Torstein A., Utigard T., Barati M. Fluidized bed selective oxidation sulfation roasting of nickel sulfide concentrate. Part II: Sulfation roasting. Metall. Mater. Trans. B. 2014. Vol. 45. P. 662—674.
16. Liu X.W, Feng Y.L., Li H.R. Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process. Int. J. Miner. Metall. Mater. 2012. Vol. 19. No. 5. P. 377—383.
17. Wang C.Y, Zhong S., Bradhurst D.H. Ni/Al/Co-substituted a-Ni(OH)2 as electrode materials in the nickel metal hydride cell. J. Alloys Compd. 2002. Vol. 330—332. P. 802— 805.
18. ProvaziK., GizM.J. The effect of Cd, Co and Zn additives on nickel hydroxide opto-electrochemical behaviour. J. Power Sources. 2001. No. 102. P. 224—232.
19. Liu L.P., Zhou Z.T, Peng C.H. Sonochemical intercalation synthesis of nano gamma-nickel oxyhydroxide: Structure and electrochemical properties. Electrochim. Acta. 2008. Vol. 54. No. 2. P. 434—441.
20. Van Bomme A., Dahn J.R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem. Mater. 2009. Vol. 21. No. 8. P. 1500—1503.
21. Tzanetakis N., Scott K. Recycling of nickel—metal hydride batteries. I: Dissolution and solvent extraction of metals. J. Chem. Technol. Biotechnol. 2004. Vol. 79. No. 9. P. 919— 926
22. Innocenzi V, Veglio F. Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction. Hydrometallurgy. 2012. Vol. 129—130. P. 50—58.
23. NaylA.A. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. J. Hazard. Mater. 2010. Vol. 173. No 1. P. 223—230.
24. Juang R.S., Kao H.C. Extraction separation of Co(II)/ Ni(II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors. Sep. Purif Technol. 2005. Vol. 42. No. 1. P. 65—73.
25. Amin M.A., Shokry E.M. Mabrouk. Nickel corrosion inhibition in sulfuric acid electrochemical studies, morphologies, and theoretical approach. Corrosion. 2012. Vol. 68. No. 8. P. 699.
Review
For citations:
Kolesnikov A.S., Natorhin M.I., Terukov E.I., Suigenbaeva A.Zh., Saipov A.A. Investigation of the effect of electrolyte composition and nickel depassivating additives on the electrochemical behavior of nickel sulfide. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):13-22. (In Russ.) https://doi.org/10.17073/0021-3438-2020-3-13-22