Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of temperature on the formation of stable and metastable aluminide phases in the Al-Zr-Nb alloys

https://doi.org/10.17073/0021-3438-2020-2-66-72

Abstract

The paper considers formation conditions for stable and metastable aluminides Aln(Zr1-xNbx) obtained in the crystallization of superheated Al—Zr—Nb melts. At the close zirconium content in the alloys of 0.23—0.25 at.%, the niobium content varied from 0.05 to 0.21 at.%. Alloys were prepared in a resistance furnace at 1230 °C in an argon atmosphere in graphite crucibles. Alloys were cast into a bronze mold where the cooling rate was estimated at 200 °C per second. The structural features, distribution pattern, morphology, the composition of the matrix, dendritic cells and aluminides, as well as the structural type of intermetallics in the investigated alloys were studied using scanning electron and optical microscopy, X-ray phase analysis, X-ray diffraction analysis, electron microprobe analysis including inductively coupled plasma atomic emission spectroscopy. It was shown that the growth forms of stable aluminides (D023 structural type) change from the faceted to dendritic one, and primary metastable aluminides (L12 structural type) begin to form during the Al—Zr—Nb melt overheating at 360—365 °C above the liquidus temperature. Only metastable aluminides with both polyhedral and dendritic growth forms are formed in the alloys when overheated by 390 —395 °C and higher. The near-peritectic niobium composition of the Al—Zr—Nb alloy (at the zirconium content more than seven times higher than the peritectic one) are crucial factors in the formation of a large fraction of metastable AlnZr aluminides having a cubic L12 structure. It was shown that, in accordance with isomorphism rules, Nb replaces Zr at equivalent positions of the crystal lattice of aluminides. The intensity of isomorphism of the Al4(Zr0.79Nb0.21) intermetallics formed increases with the increasing melt overheating temperature.

About the Authors

E. A. Popova
Institute of Metallurgy (IMET) of Urals Branch of the RAS
Russian Federation

Cand. Sci. (Eng.), Senior researcher, Laboratory of the physical chemistry of metallurgical melts, Institute of Metallurgy (IMET) of Urals Branch of the RAS.

620016, Yekaterinburg, Amundsena str., 101.



P. V. Kotenkov
Institute of Metallurgy (IMET) of Urals Branch of the RAS
Russian Federation

Cand. Sci. (Chem.), Senior researcher, Laboratory of the physical chemistry of metallurgical melts, IMET.

620016, Yekaterinburg, Amundsena str., 101.



I. O. Gilev
Institute of Metallurgy (IMET) of Urals Branch of the RAS
Russian Federation

PhD student, Junior researcher, Laboratory of the physical chemistry of metallurgical melts, IMET.

620016, Yekaterinburg, Amundsena str., 101.



S. Yu. Melchakov
Institute of Metallurgy (IMET) of Urals Branch of the RAS
Russian Federation

Cand. Sci. (Chem.), Senior researcher, Laboratory of the physical chemistry of metallurgical melts, IMET.

620016, Yekaterinburg, Amundsena str., 101.



A. B. Shubin
Institute of Metallurgy (IMET) of Urals Branch of the RAS
Russian Federation

Dr. Sci. (Chem.), Head of the Laboratory of the physical chemistry of metallurgical melts, IMET.

620016, Yekaterinburg, Amundsena str., 101.



References

1. Zakharov V.V. About alloying of aluminum alloys with transition metals. Metal Sci. Heat Treatment. 2017. Vol. 59. Iss. 1-2. P. 67—71. DOI: 10.1007/s11041-017-0104-2.

2. Pozdnyakov A.V., Osipenkova A.A., Popov D.A., Makhov S.V., Napalkov V.I. Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al—0.2%Zr— 0.1% Sc. Metal Sci. Heat Treatment. 2017. Vol. 58. Iss. 9-10. P. 537—542. DOI: 10.1007/s11041-017-0050-z.

3. Wu H., Wen S.P., Gao K.Y., Huang H., Wang W., Nie Z.R. Effect of Er additions on the precipitation strengthening of Al—Hf alloys. Scripta Mater. 2014. Vol. 87. P. 5—8. DOI: 10.1016/j.scriptamat.2014.06.005.

4. Stan K., Litynska-Dobrzynska L., Ochin P., Garzel G., Wierzbicka-Miernik A., Wojewoda-Budka J. Effect of Ti, Zr and Hf addition on microstructure and properties of rapidly solidified Al—Mn—Fe alloy. J. Alloys Compd. 2014. Vol. 615. P. S607—S611. DOI: 10.1016/j.jallcom.2013.11.160.

5. Tkacheva O.Yu., Brodova I.G., Arkhipov P.A., Zaikov Yu.P. Effect of crystallization conditions on structure and modifying ability of Al—Sc alloys. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 7. P. 67—74. DOI: 10.3103/S1067821217010126.

6. Yu P., Yana M., Tomus D., Brice C.A., Bettles C.J., Muddle B., Qian M. Microstructural development of electron beam processed Al—3Ti—1Sc alloy under different electron beam scanning speeds. Mater. Characterization. 2018. Vol. 143. P. 43—49. DOI:.1016/j.matchar.2017.09.005.

7. Popova E.A., Shubin A.B., Kotenkov P.V., Pastukhov E.A., Bodrova L.E., Fedorova O.M. Al—Ti—Zr master alloys: structure formation. Russian metallurgy (Metally). 2012. No. 5. P. 357—361. DOI: 10.1134/S0036029512050126.

8. Popova E.A., Kotenkov P.V., Shubin A.B., Pastukhov E.A. Peculiarities of the Al — Hf — Sc master alloys structure. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 6. P. 639—643. DOI: 10.3103/S1067821217060086.

9. Popova E., Kotenkov P., Shubin A., Gilev I. Formation of Metastable Aluminides in Al—Sc—Ti (Zr, Hf) Cast Alloys. Metal. Mater. Inter. 2019. DOI: 10.1007/s12540-019-00397-x.

10. Popova E.A., Kotenkov P.V., Shubin A.B. Metastable aluminides formation in Al—Hf—Ti alloys. Tsvetnye Metally. 2017. No. 11. P. 65—70 (In Russ.).

11. Srinivasan S., Desch P.B., Schwarz R.B. Metastable Phases in the Al3X (X = Ti, Zr, and Hf) Intermetallic System. Scripta Metal. Mater. 1991. Vol. 25. No. 11. P. 2513—2516. DOI: 10.1016/0956-716X(91)90059-A.

12. Malek P., Janecek M., Smola B., Bartuska P., Plestil J. Structure and properties of rapidly solidified Al—Zr—Ti alloys. J. Mater. Sci. 2000. Vol. 35. P. 2625—2633. DOI: 10.1023/A:1004739718504.

13. Brodova I.G., Zamyatin V.M., Popel' P.S., Esin V.O., Baum B.A., Moiseev A.I., Korshunov I.P., Topchii A.L., Tikhomirov Yu.G., Polents I.V. Conditions of formation of metastable phases during crystallization of Al—Zr alloys. Melts Moscow. 1990. Vol. 2. No. 6. P. 441—445.

14. Norman A.F., Tsakiropoulos P. Rapid solidification of Al— Hf alloys — solidification, microstructures and decomposition of solid-solutions. Int. J. Rapid Solid. 1991. Vol. 6. No. 3-4. P. 185—213.

15. Brodova I.G., Polents I.V., Esin V.O., Lobov E.M. On the formation of the cast structure of supercooled Al—Ti alloys. Physics of Metals and Metallography. 1992. No. 1. P. 63—67.

16. Knipling K.E., Dunand D.C., Seidman D.N. Nucleation and precipitation strengthening in dilute Al—Ti and Al—Zr alloys. Metal. Mater. Trans. A. 2007. Vol. 38A. P. 2552— 2563. DOI: 10.1007/s11661-007-9283-6.

17. Carlsson A.E., Meschter P.J. Relative stability of L12, D022, and D023 structures in MAl3 compounds. J. Mater. Res. 1989. Vol. 4. No. 5. P. 1060—1063. DOI: 10.1557/JMR.1989.1060.

18. Anthony de Luca, David N. Seidman, David C. Dunand. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al—Zr—Sc—Er—Si alloys. Acta Mater. 2019. Vol. 165. P. 1—14. DOI: 10.1016/j.actamat.2018.11.031.

19. Keith E. Knipling, Richard A. Karnesky, Constance P. Lee, David C. Dunand, David N. Seidman. Precipitation evolution in Al—0,1Sc, Al—0,1Zr and Al—0,1Sc—0,1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010. Vol. 58. No. 15. P. 5184—5195. DOI: 10.1016/j.actamat.2010.05.054.

20. Dinc Erdeniz, Anthony De Luca, David N. Seidman, David C. Dunand. Effects of Nb and Ta additions on the strength and coarsening resistance of precipitation-strengthened Al—Zr—Sc—Er—Si alloys. Mater. Characterization. 2018. Vol. 141. P. 260—266. DOI: 10.1016/j.matchar.2018.04.051.

21. Yang Wang, Hongyu Liu, Xiaochun Ma, Ruizhi Wu, Jian-feng Sun, Legan Hou, Jinghuai Zhang, Xinlin Li, Milin Zhang. Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy. Mater. Characterization. 2019. Vol. 15. P. 241—247. DOI: 10.1016/j.matchar.2019.06.001.

22. Nhon Q. Vo, Davaadorj Bayansan, Amirreza Sanaty-Zadeh, Evander Ramos, David C. Dunand. Effect of Yb microadditions on creep resistance of a dilute Al—Er—Sc—Zr alloy. Materialia. 2018. Vol. 4. P. 65—69. DOI: 10.1016/j.mtla.2018.08.030.

23. Zhongxia Liu, Zijiong Li, Mingxing Wang, Yonggang Weng. Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al—5Mg alloys. Mater. Sci. Eng. A. 2008. Vol. 483-484. P. 120—122. DOI: 10.1016/j.msea.2006.09.166.

24. Murray J.L., Peruzzi A., Abriata J.P. The Al—Zr (aluminum-zirconium) system. J. Phase. Equil. 1992. 13 (3). Р. 277—291. DOI: 10.1007/BF02667556.

25. Okamoto H. Phase diagrams for binary alloys. ASM International, Materials Park, 2002.


Review

For citations:


Popova E.A., Kotenkov P.V., Gilev I.O., Melchakov S.Yu., Shubin A.B. Effect of temperature on the formation of stable and metastable aluminide phases in the Al-Zr-Nb alloys. Izvestiya. Non-Ferrous Metallurgy. 2020;(2):66-72. (In Russ.) https://doi.org/10.17073/0021-3438-2020-2-66-72

Views: 664


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)