Composition and crystal structure of ternary phases in the Ta-Ni-Al system
https://doi.org/10.17073/0021-3438-2020-2-47-54
Abstract
The study covers the composition and crystal structure of compounds produced by self-propagating high-temperature synthesis (SHS) from the 5Ta—2Ni—3Al (at.%) powder mixture followed by vacuum remelting at 3000 °C. The SHS product contains the following phases: TaNiAl (Laves τ1-phase), NiAl, Ni2Al3, and Ta. Its microstructure features by the presence ofternary phases with the composition Ta85Ni7Al8, Ta52Ni20Al28 and Ta53Ni25Al22 according to elemental analysis. The X-ray diffraction pattern of the remelted material revealed reflections that do not belong to any of the known ternary phases in the Ta—Ni—Al system considered. Based on the homological approach, it was found that these reflections belong to three phases with the structural types W6Fe7 (R3m), Ti2Ni (Fd3m) and Ta3Al (P42/mnm). It was possible to define them as reflections of three compounds — Ta6,5Ni6,5, Ti2Ni and Ta2,84Al0,91 with unit cell parameters different from those for the same compounds with the retained structural type. The increase in the unit cell parameters for all the phases identified was noted as compared to the known binary intermetallics. It may be associated with the presence of Al atoms in the crystal lattice for the Ta6.5Ni6.5 phase and Al and Ta atoms in the phase with the structural type Ti2Ni. X-ray diffraction analysis and crystal-chemical modeling made it possible to identify Ta6.5Ni6.5 and Ti2Ni phases as Ta6Ni6Al and Ta2Ni0.5Al0.5, to determine their structural type, composition and unit cell parameters. Full-profile analysis was conducted to specify the structure and composition and determine unit cell parameters of the phases and their quantitative ratio in the material. The material phase composition is 47 wt.% Ta6Ni6Al, 16 wt.% Ta2Ni0.5Al0.5 and 37 wt.% Ta3Al.
About the Authors
A. S. ShchukinRussian Federation
Cand. Sci. (Tech.), Senior researcher, Laboratory of materials science, Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
S. V. Konovalikhin
Russian Federation
Cand. Sci. (Chem.), Senior researcher, Laboratory of X-ray diffraction studies, ISMAN.
142432, Moscow reg., Chernogolovka, Acad. Osip'yan str., 8.
D. Yu. Kovalev
Russian Federation
Cand. Sci. (Tech.), Head of Laboratory of X-ray diffraction studies, ISMAN.
142432, Moscow reg., Chernogolovka, Acad. Osip'yan str., 8.
A. E. Sytschev
Russian Federation
Cand. Sci. (Tech.), Leading researcher, Head of Laboratory of materials science, ISMAN.
142432, Moscow reg., Chernogolovka, Acad. Osip'yan str., 8.
References
1. Raghavan V. Al—Ni—Ta (aluminum—nickel—tantalum). J. Phase Equil. Diffus. 2006. Vol. 27. No. 4. P. 405—407. DOI: 10.1007/s11669-006-0016-0.
2. da Rocha F.S., Fraga G.L F, Brandao D.E., Da Silva C.M., Gomes A.A. Specific heat and electronic structure of Heusler compounds Ni2TAl (T = Ti, Zr, Hf, V, Nb, Ta). Physica B: Cond. Matter. 1999. Vol. 269. No. 2. P. 154—162. DOI: 10.1016/S0921-4526(99)00102-7.
3. Zhou S., Chen L.Q., MacKay R.A., Liu Z.K. Evaluation of the thermodynamic properties and phase equilibria of the ordered y' and disordered у phases in the Ni—Al—Ta system. MRS Proceedings. 2002. Vol. 755. P. 443—450. DOI: 10.1557/PROC-755-DD11.25.
4. Subramanian P.R., Miracle D.B., Mazdiyasni S. Phase relationships in the Al—Ta system. Metal. Trans. A. 1990. Vol. 21. No. 2. P. 539—545. DOI: 10.1007/BF02671926.
5. Miura S., Hong Y. M., Suzuki T., Mishima Y. Liquidus and solidus temperatures of Ni-solid solution in Ni— Al—X (X: V, Nb and Ta) ternary systems. J. Phase Equil. Diffus. 2001. Vol. 22. No. 3. P. 345—351. DOI: 10.1361/105497101770338860.
6. Johnson D.R., Oliver B.F. Ternary peritectic solidification in the NiAl—Ni2AlTa—NiAlTa system. Mater. Lett. 1994. Vol. 20. No. 3-4. P. 129—133. DOI: 10.1016/0167-577X(94)90074-4.
7. Zakharov A. Aluminium—nickel—tantalum. In: Ternary alloys: A comprehensive compendium of evaluated constitutional data and phase diagrams: Al—Mg—Se to Al—Ni—Ta. N.Y.: Wiley-VCH, 1992. Vol. 7. P. 483—497.
8. Villars P., Prince A., Okamoto H. Al—Ni—Ta. Handbook of ternary alloy phase diagrams. ASM International. 1995. Vol. 4. P. 4186—4192.
9. Kuznetsov V. Al—Ni—Ta (aluminium—nickel—tantalum). In: Light metal systems. Pt. 3. Landolt—Bornstein — Group IV physical chemistry. Berlin—Heidelberg: Springer-Verlag, 2005. Vol. 11A3. P. 425—439. DOI: 10.1007/10915998_33.
10. Palm M., Sanders W., Sauthoff G. Phase equilibria in the Ni—Al—Ta system. Zeitschrift ftir Metallkunde. 1996. Bd. 87. No. 5. S. 390—398.
11. Shchukin A.S., Vrel D, Sytschev A.E. Interaction of NiAl intermetallic during SHS synthesis with Ta substrate. Adv. Eng. Mater. 2018. Vol. 20. No. 8. P. 1701077. DOI: 10.1002/adem.20170107.
12. Shchukin A.S., Kovalev D.Yu., Sytschev A.E., Shcherbakov A.V. Formation of new intermetallic phases in the Ta—Ni—Al system. Perspektivnye materialy. 2019. No. 10. P. 5—13 (In Russ.).
13. Macrae C.F, Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0 — New features for the visualization and investigation of crystal structures. J. Appl. Crystallography. 2008. Vol. 41. No. 2. P. 466—470. DOI: 10.1107/S0021889807067908.
14. Zeumert B., Sauthoff G. Intermetallic NiAl—Ta alloys with strengthening Laves phase for high-temperature applications. I. Basic properties. Intermetallics. 1997. Vol. 5. No. 7. P. 563—577. DOI: 10.1016/S0966-9795(97)00031-9.
15. Kripyakevich P.I., Gladyshevskij E.I., Pylaeva E.N. W6Fe7 compounds in Ta—Ni and Nb—Ni systems. Kristallografiya. 1962. Vol. 7. No. 2. P. 212—216 (In Russ.).
16. Yurko G.A., Barton J.W, Parr J.G. The crystal structure Ti2Ni. Acta Crystallograph. 1959. Vol. 12. No. 11. P. 909— 911. DOI: 10.1107/S0365110X59002559.
17. Edshammar Lars-Erik , Holmberg B. The G-phase Ta2Al. Acta Chem. Scand. 1960. Vol. 14. No. 5. P. 1219—1220. DOI: 10.3891/acta.chem.scand.14-1219.
18. Boulineau A., Joubert J.M., Cerny R. Structural characterization of the Ta-rich part of the Ta—Al system. J. Solid State Chem. 2006. Vol. 179. No. 11. P. 3385—3393. DOI: 10.1016/j.jssc.2006.07.001.
19. Bacanov S.S. Structural chemistry. Facts and dependencies. Moscow: Dialog-MGU, 2000 (In Russ.).
20. Novotny H., Bruki C., Benesovsky F. Untersuchungen in den systemen tantal—aluminium—silicium und wolf- ram—aluminium—silicium. Monatsh. Chem. 1961. Vol. 92. No. 1. P. 116—127.
21. Bilic A., Gale J.D., Gibson M.A., Wilson N., McGregor K. Prediction of novel alloy phases of Al with Sc or Ta. Sci. Rep. 2015. Vol. 5. Step. 9909. DOI: 10.1038/step9909.
22. McCusker L.B., Von Dreele R.B., Cox D.E., IMW D, Scardi P. Rietveld refinement guidelines. J. Appl. Crystallograph. 1999. Vol. 32. No. 1. P. 36—50. DOI: 10.1107/S0021889898009856.
Review
For citations:
Shchukin A.S., Konovalikhin S.V., Kovalev D.Yu., Sytschev A.E. Composition and crystal structure of ternary phases in the Ta-Ni-Al system. Izvestiya. Non-Ferrous Metallurgy. 2020;(2):47-54. (In Russ.) https://doi.org/10.17073/0021-3438-2020-2-47-54