Aluminum alloy matrix composite reinforced with metallic glasses particles using hot-roll bonding
https://doi.org/10.17073/0021-3438-2020-2-39-46
Abstract
Composite materials (CM) exhibit high hardness, strength and wear resistance with slightly limited processing properties. The most popular reinforcing components for discretely reinforced composites are carbide, nitride or oxide particles. Amorphous metal materials can be used as an alternative reinforcing component since reinforcement with these particles can ensure improved properties due to higher strength of interfacial bonding between the particles and matrix as compared to traditional reinforcements. A metal matrix composite sheet was obtained based on the Al—5%Zn—5%Ca alloy reinforced by particles of Co48Cr15Mo14C15B6Tm2 amorphous metallic glasses with the AA5083 cladding layer. The central layer thickness of the Al—5%Zn—5%Ca alloy reinforced by metallic glass particles covered 60 % of the sheet thickness, and the cladding layer covered 40 % in total. Composite material granules were obtained by mechanical alloying with their subsequent consolidation by hot-roll bonding in the cladding shell at the temperature below the amorphous component devitrification temperature. X-ray and differential thermal analysis showed that metallic glasses retain their amorphous structure after processing in the planetary mill and further consolidation during hot rolling. The microstructure at different steps of composite material production was studied by scanning electron microscopy. Mechanical properties were evaluated by uniaxial tension tests at room temperature. The volume fraction of amorphous particles in the as-rolled state was about |0 %, and their size varied between 2 and 187 pm. The hardness of the obtained composite was 25 % higher as compared to the Al—5%Zn—5%Ca matrix alloy. At the same time, yield strength of the cladded composite material was two times higher than that of the matrix and cladding alloy samples.
About the Authors
A. D. KotovRussian Federation
Cand. Sci. (Tech.), Associate prof., Department of physical metallurgy of non-ferrous metals, National University of Science and Technology (NUST) «MISIS».
119049, Moscow, Leninskii pr., 4.
A. V. Mikhaylovskaya
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of physical metallurgy of non-ferrous metals, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
A. G. Mochugovskiy
Russian Federation
Cand. Sci. (Tech.), Assistant, Department of physical metallurgy of non-ferrous metals, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
S. V. Medvedeva
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of physical metallurgy of non-ferrous metals, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
A. I. Bazlov
Russian Federation
Cand. Sci. (Tech.), Senior lecture, Department of physical metallurgy of non-ferrous metals, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
References
1. Kainer K.U. Metal matrix composites. Custom-made materials for automotive and aerospace engineering. Weinheim: Wiley-VCH Verlag GmbH & Co, 2006.
2. Embury J.D., Lloyd D.J., Ramachandran T.R. Strengthening mechanisms in aluminum alloys. In: Aluminum alloys — contemporary research and applications. Academic Press, Inc., 1989. Vol. 31, Ch. 22. P. 579—601.
3. Alves F.L., Baptista A., Marques A. Metal and ceramic matrix composites in aerospace engineering. In: Advanced composite materials for aerospace engineering. Processing, properties and applications. Adv. Composit. Mater. Aerospace Eng. Woodhead Publ., 2016. Ch. 3. P. 59—99.
4. Garg P., Jamwal A., Kumar D., Sadasivuni K.K., Hussain C.M., Gupta P. Advance research progresses in aluminium matrix composites: Manufacturing & applications. J. Mater. Res. Technol. 2019. Vol. 8. No. 5. P. 4924—4939. DOI: 10.1016/j.jmrt.2019.06.028.
5. Miracle D.B. Metal matrix composites — From science to technological significance. Composit. Sci. Technol. 2005. Vol. 65. No. 15-16. P. 2526—2540. DOI: 10.1016/j.comp-scitech.2005.05.027.
6. Chernyshov E.A., Romanov A.D., Romanova E.A., Mylnikov V.V. Development of the production technology of cast aluminum matrix composite by alumina strengthening phase synthesis in an aluminum melt. Russ. J. Non-Ferr. Met. 2019. Vol. 60. P. 76—80. DOI: 10.3103/S1067821219010036.
7. Sharifi H., Borujeni H.R., Nasresfahani M.R. The influence of volume fraction of SiC particles on the properties of Al/SiCp nanocomposites produced by powder metallurgy with high energy ball milling. Russ. J. Non-Ferr. Met. 2016. Vol. 57. P. 728—733. DOI: 10.3103/S1067821216070130.
8. Guler K.A., Kisasoz A., Karaaslan A. The fabrication and characterization of Al/SiC-MMC castings produced by vacuum assisted solid mould investment casting process. Russ. J. Non-Ferr. Met. 2013. Vol. 54. No. 4. P. 320—324. DOI: 10.3103/S1067821213040068.
9. Rana R.S., Purohit R., Das S. Review of recent studies in Al matrix composites. Int. J. Sci. Eng. Res. 2012. Vol. 3. No. 6. P. 1—7.
10. Dudina D.V., Georgarakis K., Li Y., Aljerf M., LeMoulec A., Yavari A.R., Inoue A. A magnesium alloy matrix composite reinforced with metallic glass. Composit. Sci. Technol. 2009. Vol. 69. No. 15-16. P. 2734—2736. DOI:10.1016/j.compscitech.2009.08.001.
11. Deuis R.L., Subramanian C., Yellup J.M. Dry sliding wear of aluminium composites — A review. Composit. Sci. Technol. 1997. Vol. 57. P. 415—435. DOI: 10.1016/S0266-3538(96)00167-4.
12. Zheng R., Yang H., Liu T., Ameyama K., Ma C. Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles. Mater. Design. 2014. Vol. 53. P. 512—518. DOI: 10.1016/j.matdes.2013.07.048.
13. Scudino S., Surreddi K. B., Sager S., Sakaliyska M., Kim J.S., Loser W., Eckert J. Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites. J. Mater. Sci. 2008. Vol. 43. No. 13. P. 4518—4526. DOI: 10.1007/s10853-008-2647-5.
14. Lee M.H., Kim J.H., Park J.S., Kim J.C., Kim W.T., Kim D.H. Fabrication of Ni—Nb—Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scripta Mater. 2004. Vol. 50. No. 11. P. 1367— 1371. DOI: 10.1016/j.scriptamat.2004.02.038.
15. Louzguine-Luzgin D.V., Bazlov A.I., Ketov S.V., Inoue A. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability. Mater. Chem. Phys. 2015. Vol. 162. P. 197—206. DOI:10.1016/j.matchemphys.2015.05.058.
16. Ramirez. P, Alday F.G., Adabbo H.E., Ruano O.A. Super-plastic behaviour of Al—5 wt.%Ca—5 wt%Zn alloy. Mater. Sci. Eng. 1987. Vol. 93. P. L11—L15. DOI: https://doi.org/10.1016/0025-5416(87)90433-2.
17. ASTM E 92 Standard test method for vickers hardness of metallic materials, American society for testing and materials 100 Barr Harbor Dr., West Conshohocken. PA 19428. Reprinted from the Annual Book of ASTM Standards. Copyright AST.1997.
18. Meduri C., Hasan M., Adam S., Kumar G. Effect of temperature on shear bands and bending plasticity of metallic glasses. J. Alloys Compd. 2018. Vol. 732. P. 922—927. DOI: https://doi.org/10.1016/j.jallcom.2017.10.276.
19. Churyumov A.Yu., Bazlov A.I., Tsarkov A.A., Solonin A.N., Louzguine-Luzgin D.V. Microstructure, mechanical properties, and crystallization behavior of Zr-based bulk metallic glasses prepared under a low vacuum. J. Alloys Compd. 2016. Vol. 654. P. 87—94. DOI: https://doi.org/10.1016/j.jallcom.2015.09.003.
20. Faupel F., Frank W., Macht M.-P., Mehrer H., Naundorf V., Riitzke K, Schober H.R., Sharma S.K., Teichler H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 2003. Vol. 75. P. 237—280. DOI: 10.1103/RevModPhys.75.237.
21. Ehmler H., Heesemann A., Ratzke K, Faupel F., Geyer U. Mass dependence of diffusion in a supercooled metallic melt. Phys. Rev. Lett. 1998. Vol. 80. P. 4919—4922. DOI: 10.1103/PhysRevLett.80.4919.
22. Louzguine-Luzgin D.V., Polkin V.I. Properties of bulk metallic glasses. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 1. P. 80—92. DOI: 10.3103/S1067821217010084.
23. Nakajima H., Honma Y., Nonaka K., Shiozawa K., Nishiyama N., Inoue A., Masumoto T. Diffusion of iron in Mg60Ni25Nd15 amorphous alloys with a wide supercooled liquid region. Mater. Sci. Eng. A. 1994. Vol. 179-180. P. 334—336. DOI: 10.1016/0921-5093(94)90221-6.
24. Rofman O.V., Prosviryakov A.S., Mikhaylovskaya A.V., Kotov A.D., Bazlov A.I., Cheverikin V.V. Processing and microstructural characterization of metallic powders produced from chips of AA2024 alloy. JOM. 2019. Vol. 71 (9). P. 2986—2995. DOI: 10.1007/s11837-019-03581-x.
25. Wan B., Chen W., Lu T., Liu F., Jiang Z., Mao M. Review of solid state recycling of aluminum chips. Res. Conserv. Recycl. 2017. Vol. 125. P. 37—47. DOI: 10.1016/j.resconrec.2017.06.004.
26. Soni P.R. Mechanical alloying: Fundamentals and applications. Cambridge: Cambridge Inter. Sci. Publ., 1999.
27. Wang Z., Ketov S.V., Sun B., Chen C., Churyumov A.Y., Louzguine-Luzgin D.V. Eutectic crystallization during fracture of Zr—Cu—Co—Al metallic glass. Mater. Sci. Eng. A. 2016. Vol. 657. P. 210—214. DOI: 10.1016/j.msea.2016.01.096.
Review
For citations:
Kotov A.D., Mikhaylovskaya A.V., Mochugovskiy A.G., Medvedeva S.V., Bazlov A.I. Aluminum alloy matrix composite reinforced with metallic glasses particles using hot-roll bonding. Izvestiya. Non-Ferrous Metallurgy. 2020;(2):39-46. (In Russ.) https://doi.org/10.17073/0021-3438-2020-2-39-46