Diffusion of tin in copper-tin system solid solution
https://doi.org/10.17073/0021-3438-2020-2-32-38
Abstract
Electron probe microanalysis (EPMA) was used to obtain concentration curves and calculate bulk diffusion coefficients in solid solutions of the copper-tin system in the tin concentration range of less than 13.9 wt.% (7.96 at.%) and temperature range of 500 to 650 °С. Diffusion couples were made of pure copper (99,995 %) and two-component alloy obtained by direct alloying of metallic copper with chemically pure tin in Ar—H atmosphere at 1100 °C in the quartz reactor during 2 hours. Diffusion coefficients were calculated using the Matano-Boltzmann method and the method proposed by Grube, i.e. in the tin concentration range from 6 to 8 at.% (D1) on the top of the concentration curve, and from 2 at.% to zero (D2) on the bottom of the concentration curve. It is shown that tin diffusion coefficients in the concentrated solution were several times greater than in the diluted one. It is shown that diffusion activation energy values virtually coincide with isotope measurement data on tin diffusion in pure copper (187 kJ/mol). A qualitative interpretation is proposed for the tin diffusion acceleration effect in the concentrated solid solution of the copper-tin system.
About the Authors
V. P. NikulkinaRussian Federation
Postgraduate student, Department of physical chemistry, National University of Science and Technology (NUST) «MISIS».
119049, Moscow, Leninskii pr., 4.
A. O. Rodin
Russian Federation
Cand. Sci. (Phys.-Mat.), Associate prof., Department of physical chemistry, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
B. S. Bokshtein
Russian Federation
Dr. Sci. (Phys.-Mat.), Prof., Department of physical chemistry, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
References
1. Kostrzhitsky A.I., Gusareva O.F. Patterns of formation of the structure of iron-chromium coatings during ion deposition. Izv. AN SSSR. Metally.1987. No. 1. P. 169—172 (In Russ.).
2. Wang J., Leinbach C., Liu H.S., Roth M., Jin Z.P. Reassessment of diffusion mobilities in the face-centered cubic Cu—Sn alloys. CALPHAD. 2009. No. 33. Р. 704—710.
3. Minho O., Vakanas G., Moelans N., Kajihara M., Zhang W. Formation of compounds and Kirkendall vacancy in the Cu—Sn system. Microelectronic Engineering. 2014. Vol. 120. Р. 133—137.
4. Baheti V.A., Kashuap S., Kumar P., Chattopadhya K., Paul A. J. Solid—state diffusion— controlled growth of the intermediate phases from room temperature to an elevated temperature in the Cu—Sn and the Ni—Sn systems. J. Alloys Compd. 2017. No. 727. P. 832—840.
5. Labie R., Ruythooren W., VanHumbeeck J. Solid state diffusion in Cu—Sn and Ni—Sn diffusion couples with flip-chip scale dimensions. Intermetallics. 2007. No. 15. P. 396—403.
6. Chao B., Chae S-H., Zhang X., Lu K-H., Im J., Ho P.S. Investigation of diffusion and electromigration parameters for Cu—Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater. 2007. No. 55. P. 2805—2814.
7. Gorbachev V.A., Klotsman S.M., Rabovskiy Y.A., Talinskiy V.K., Timofeev A.N. Diffusion of impurities in copper. IV. Diffusion of tin and antimony in single crystals of copper. Fizika metallov i metallovedenie. 1973. No. 35. P. 889—893 (In Russ.).
8. Fogelson R.L., Ugay Y.A., Akimova I.A. Diffusion of tin in copper. Fiz. Met. Metallogr. 1974. No. 37. Р. 1107— 1108.
9. Oikawa H., Hosoi A. Interdiffusion in Cu—Sn solid solutions confirmation of anomalously large Kirkendall effect. Scripta Metallurgica. 1975. No. 9. P. 823—828.
10. Hoshino K., Iijima A.Y., Hirano K.I. Interdiffusion and Kirkendall effect in Cu—Sn alloys. Trans. Jap. Inst. Metals. 1980. No. 21(10). P. 674—682.
11. Santra S., Paul A. Vacancy wind effect on interdiffusion in a dilute Cu(Sn) solid solution. Philosophical Magazine Letters. 2012. No. 92(8). P. 1—11.
12. Onishi M., Fujibuchi M. Reaction-diffusion in the Cu—Sn system. Trans. Jap. Inst. Metals. 1975. No. 16. P. 539—547.
13. Paul A., Ghoshi C., Boetinger W.J. Diffusion parameters and growth mechanism of phases in the Cu—Sn system. Metal. Mater. Trans. 2011. No. 42A. P. 952—963.
14. Kumar S., Handwerker C., Dayamanda M., Phase J. Intrinsic and interdiffusion in Cu—Sn system. Equilibria and Diffusion. 2011. No. 32(4). P. 309—319.
15. Massalski B. Binary alloy phase diagrams. Ohio: Metals Park, Amer. Soc. Met., 1986.
16. Predel B., Schallner U. Thermodynamic investigation of the Cu—Ga, Cu—In, Cu—Ge and Cu—Sn Systems. Mater. Sci. Eng. 1972. No. 10. Р. 249—258.
17. Wallbrecht R.C., Blachnik R., Mills R.C. The heat capacity and enthalpy of some hume—rothery phases formed by copper, silver and gold. Part II. Cu + Ge, Cu + Sn, Ag + Sn, Au + Sn, Au + Pb systems. Thermochimica Acta.1981. No. 46. P. 167—174.
18. Matano C. On the relation between the diffusion coefficient and concentration of solid metals. Jap. J. Phys. 1933. No. 8. P. 109—113.
19. den Broeder E.J.A. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems. Scripta Met. 1969. No. 3(5). P. 321—325.
20. Darken L. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. AIME. 1948. No. 175. P. 184—201.
21. Adda Y., Philibert J. La diffusion dans les solides. Paris: Press Universitaires de France, 1966.
22. Grube G., Jedele A. Die Diffusion der Metalle im esten Zu- stand. Z. Elektrochem. 1932. No. 38. S. 799—807.
23. Crank J. Mathematics of diffusion. Oxford: Clarendon Press, 1956.
24. Bardeen J., Herring C. Atom movements. A.S.M. Cleveland. 1951. P. 87—288.
25. Bardeen J., Herring C. Imperfections in nearly perfect crystals. N.Y.: Wiley, 1952.
26. Mendelev M.I., Srolovitz D.J. Thermodynamics and kinetics in materials science. Oxford University Press, 2005.
Review
For citations:
Nikulkina V.P., Rodin A.O., Bokshtein B.S. Diffusion of tin in copper-tin system solid solution. Izvestiya. Non-Ferrous Metallurgy. 2020;(2):32-38. (In Russ.) https://doi.org/10.17073/0021-3438-2020-2-32-38