Influence of the combined radial shear rolling and rotary forging on the stress-strain state of the small diameter bar stock of titanium-based alloys
https://doi.org/10.17073/0021-3438-2020-2-22-31
Abstract
The paper focuses on the finite element method used to simulate the stress-strain state of a small-diameter bar stock during hot-forming in a combination of radial shear rolling (RSR) and rotary forging (RF). Simulation was carried out using the rheological model of the Ti-6Al-4V titanium-based alloy with the QForm VX software. A combination of radial shear rolling of a workpiece with a diameter of 15 mm to 12 mm bar in one pass and subsequent rotary forging in one, two and three passes to obtain bars with diameters 11, 10 and 8 mm is simulated. During the simulation, step-by-step accumulation of plastic deformation was taken into account in the conditions of its nonuniform distribution. The intermediate and finite fields of plastic deformation, strain rate and average stress are obtained. It is shown that plastic deformation distribution after RSR has an expressed gradient with a maximum value (3 or more) at the periphery of the cross-section and a minimum value (about 1) at the center. As a result of RF, even with small reductions, the stress-strain state becomes much more uniform compared with a workpiece of the same diameter after radial shear rolling only. In addition, residual tensile stresses due to compressive stresses during rotary forging are reduced. Direct experimental testing of the combined deformation method was carried out for a promising medical-grade Ti-Zr-Nb shape memory alloy when manufacturing 7-8 mm diameter rods in experimental production conditions. Qualitative confirmation of modeling results is obtained by metallographic analysis. It is shown that the combination of radial shear rolling and rotary forging is promising for creating industrial technologies for the manufacture of small-diameter rods with a highly uniform finely-dispersed structure.
About the Authors
Ta Dinh XuanRussian Federation
Graduate student, Department of metal forming, National University of Science and Technology (NUST) «MISIS».
119049, Moscow, Leninskii pr., 4.
V. A. Sheremetyev
Russian Federation
Cand. Sci. (Tech.), Senior researcher, Department of metal forming, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
A. A. Kudryashova
Russian Federation
Graduate student, Engineer, Scientific and educational center of nanomaterials and nanotechnology, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
S. P. Galkin
Russian Federation
Dr. Sci. (Tech.), Prof., Department of metal forming, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
V. A. Andreev
Russian Federation
Cand. Sci. (Tech.), General director, MATEK-SMA Ltd.; Senior researcher, Laboratory of plastic deformation of metallic materials, Baikov Institute of Metallurgy and Materials Science, RAS.
117449, Moscow, Karier 2a, bld. 1 - 137; 119991, Moscow, Leninskii pr., 49.
S. D. Prokoshkin
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Department of metal forming, NUST «MISIS».
119049, Moscow, Leninskii pr., 4.
V. Brailovski
Canada
Dr. Sci., Prof., Ecole de Technologie Superieure.
Montreal 1100, Notrie Dame.
References
1. Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review. Progr. Mater. Sci. 2009. Vol. 54. Iss. 3. P. 397—425.
2. Kim H.Y., Fu J., Tobe H., Kim J.I., Miyazaki S. Crystal structure, transformation strain, and superelastic property of Ti—Nb—Zr and Ti—Nb—Ta alloys. Shape Memory and Superelasticity. 2015. Vol. 1. Iss.2. P. 107—116.
3. Sheremetyev V.A., Kudryashova A.A., Dinh X.T., Galkin S.P., Prokoshkin S.D., Brailovski V. Advanced technology for preparing bar from medical grade Ti—Zr—Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019. Vol. 63. Iss. 1-2. P. 51—61.
4. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S., Prokoshkin S., Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti—18Zr— 14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties. J. Alloys Compd. 2019. Vol. 800. P. 320—326.
5. Galkin S.P. Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling. Stal'. 2004. No. 7. Р. 63—66.
6. Dobatkin S., Galkin S., Estrin Y., Serebryany V., Diez M., Martynenko N., Lukyanova E., Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloys Compd. 2019. Vol. 774. P. 969—979.
7. Akopyan T., Aleshchenko A.S., Belov N.A., Galkin S.P. Effect of radial-shear rolling on the formation of structure and mechanical properties of Al—Ni and Al—Ca aluminum-matrix composite alloys of eutectic type. Phys. Met. Metallograph. 2018. Vol. 119. Iss. 3. P. 241—250.
8. Karpov B.V., Patrin P.V., Galkin S.P., Kharitonov E.A., Karpov I.B. Radial-shear rolling of titanium alloy vt-8 bars with controlled structure for small diameter ingots (< 200 mm). Metallurgist. 2018. Vol. 61. Iss. 9-10. P. 884— 890.
9. Sheremetyev V., Kudryashova A., Dubinskiy S., Galkin S., Prokoshkin S., Brailovski V. Structure and functional properties of metastable beta Ti—18Zr—14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment. J. Alloys Compd. 2018. Vol. 737. P. 678—683.
10. Liu Y., Herrmann M., Schenck C., Kuhfuss B. Plastic deformation components in mandrel free infeed rotary swaging of tubes. Procedia Manufactur. 2019. Vol. 27. P. 33—38.
11. Al-Khazraji H., El-Danaf E., Wollmann M., Wagner L. Microstructure, mechanical, and fatigue strength of Ti—54M processed by rotary swaging. J. Mater. Eng. Perform. 2015. Vol. 24. Iss. 5. P. 2074—2084.
12. Moumi E., Ishkina S., Kuhfuss B., Hochrainer T., Struss A., Hunkel M. 2D-simulation of material flow during infeed rotary swaging using finite element method. Procedia Eng. 2014. Vol. 81. P. 2342—2347.
13. Vollertsen F. Micro Metal Forming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
14. Lopatin N.V. Effect of hot rolling by screw mill on microstructure of a Ti—6Al—4V titanium alloy. Int. J. Mater. Form. 2013. Vol. 6. No. 4. P. 459—465.
15. Wang Y.L., Molotnikov A., Diez M., Lapovok R., Kim H-E., Wang J.T., Estrin Y. Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations. Mater. Sci. Eng. A. 2015. Vol. 639. P. 165—172.
16. Andreev V.A., Yusupov V.S., Perkas M.M., Prosvirnin V.V., Shelest A.E., Prokoshkin S.D., Khmelevskaya I.Yu., Korotitskii A.V., Bondareva S.A., Karelin R.D. Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP. Russ. Metallurgy (Metally). 2017. Vol. 2017. Iss. 10. P. 890—894.
17. Abedian A., Poursina M., Golestanian H. A comparison between the properties of solid cylinders and tube products in multipass hot radial forging using finite element method. In: AIP Conf. Proc. (NUMIFORM, Porto, Portugal, 17—21 June 2007). Vol. 908. Iss. 1. P. 963—968.
18. Zhang Q., Jin K., Mu D., Zhang Y., Li Y. Energy-controlled rotary swaging process for tube workpiece. Int. J. Adv. Manuf. Technol. 2015. Vol. 80. Iss. 9-12. P. 2015—2026.
19. Zhang Q., Jin K., Mu D. Tube/tube joining technology by using rotary swaging forming method. J. Mater. Process. Technol. Elsevier B.V. 2014. Vol. 214. Iss. 10. P. 2085— 2094.
20. Zhang Q., Jin K., Mu D., Ma P., Tian J. Rotary swaging forming process of tube workpieces. Procedia Eng. Elsevier B.V. 2014. Vol. 81. P. 2336—2341.
21. Lopatin N.V., Galkin S.P. The effect of combined rolling on the structure and properties of VT1-0 Titanium rods. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy). 2013. No. 2. P. 39—46 (In Russ.).
22. Naizabekov A., Lezhnev S., Arbuz A., Panin E. Computer simulation of the combined process «Helical Rolling-Pressing». Key Eng. Mater. 2016. Vol. 716. P. 614—619.
23. Pachla W., Kulczyk M., Przybysz S., Skiba J., Wojciechowski K., Przybysz M., Topolski K., Sobolewski A., Charkiewicz M. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J. Mater. Process. Technol. 2015. Vol. 221. P. 255—268.
24. Kolmogorov V.L. Metal forming mechanics. Moscow: Metallurgiya, 1986 (In Russ.).
25. Wu Y., Dong X., Yu Q. Upper bound analysis of axial metal flow inhomogeneity in radial forging process. Int. J. Mech. Sci. Pergamon. 2015. Vol. 93. P. 102—110.
26. Romanenko V.P., Stepanov P.P., Kriskovich S.M. Production of hollow railroad axles by screw piercing and radial forging. Metallurgist. 2018. Vol. 61. No. 9-10. P. 873—877.
Review
For citations:
Xuan T.D., Sheremetyev V.A., Kudryashova A.A., Galkin S.P., Andreev V.A., Prokoshkin S.D., Brailovski V. Influence of the combined radial shear rolling and rotary forging on the stress-strain state of the small diameter bar stock of titanium-based alloys. Izvestiya. Non-Ferrous Metallurgy. 2020;(2):22-31. (In Russ.) https://doi.org/10.17073/0021-3438-2020-2-22-31