Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

The corrosion of aluminum matrix composite in situ based on Al–7Si–1Fe alloy

https://doi.org/10.17073/0021-3438-2019-6-70-74

Abstract

The paper provides the results of a comparative corrosion resistance study of the aluminum matrix composite produced by the method of oxygen lancing of pre–hydrogenated Al–Si–Fe aluminum alloy melt with an iron content of over 1.0 % and Al–7%Si alloy with an iron content of 0.3 % modified by the 5Al–Ti master alloy in the amount of 2 %. Corrosion in aluminum alloys is conditioned by the oxide film discontinuity in some phases, primarily Al5SiFe. Pairs of composite and reference alloy samples with a diameter of 15 mm and a length of 50 mm were tested in a 7 % solution of NaCl salt fog in SFC-1 chamber on suspension brackets at 22 °C for 300 hours. The obtained results show close values of mass losses for samples despite the significantly higher iron content in the material since 100–200 nm particles formed in the melt by oxygen lancing are deposited on the phase boundaries and reduce the area of the surface in contact with the corrosive environment. Literature data show a considerable difference in the corrosion resistance of composites ex situ from in situ due to different sizes and locations in the hardening phase matrix. The studied composite material can be recommended as a corrosion-resistant alternative to alloys with the high iron content that are used for high pressure die casting (HPDC).

About the Authors

A. B. Finkelstein
Ural Federal University
Russian Federation

Dr. Sci. (Tech.), Full prof., Department of foundry engineering and strengthening technologies

620002, Russia, Ekaterinburg, Mira str., 19



A. V. Shak
Ural Federal University
Russian Federation

Cand. Sci. (Tech.), Head of Laboratory, Department of rare metals and nanomaterials

620002, Russia, Ekaterinburg, Mira str., 19



A. A. Schaefer
Ural Federal University
Russian Federation

Assistant, Department of foundry engineering and strengthening technologies

620002, Russia, Ekaterinburg, Mira str., 19



References

1. Schuster D.M. The world won’t beat a path to your door. Key Eng. Mater. 1992. Vol. 77. P. 337—348. DOI: 10.4028/www.scientific.net/KEM.77-78.337.

2. Chikova O.A., Finkel’shtein A.B., Shefer A.A. Structure and nanomechanical properties of the Al—Si—Fe alloy produced by blowing the melt with oxygen. Phys. Met. Metallograph. 2018. Vol. 119. No. 7. P. 685—690. DOI: 10.1134/S0031918X18070037.

3. Pilling N.B., Bedworth R.E. The oxidation of metals at high temperatures. J. Inst. Met. 1923. No. 29. P. 529—582.

4. Ambat R., Davenport A.J., Scamans G.M., Afseth A. Effect of iron—containing intermetallic particles on the corrosion behaviour of aluminium. Corros. Sci. 2006. Vol. 48. No. 11. P. 3455—3471. DOI: 10.1016/j.corsci.2006.01.005.

5. Park J.O., Paik C.H., Huang Y.H., Alkire R.C. Influence of Fe—rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl. J. Electrochem. Soc. 1999. Vol. 146. No. 2. P. 517—523. DOI: S0013—4651(97)12-009-2.

6. Nis K., Davanger K.Y., Strandmyr O., Holtan H. Cathodic behavior of impure aluminum in aqueous media. J. Electrochem. Soc. 1981. Vol. 128. No. 7. P. 1523—1526. DOI: 10.1149/1.2127675.

7. Zahavi J., Zangvil A., Metzger M. Structure and stability of anodic films formed on aluminum containing dispersed Al3Fe phase. J. Electrochem. Soc. 1978. Vol. 125. No. 3. P. 438—444. DOI: 10.1149/1.2131469.

8. Seri O. The effect of NaCl concentration on the corrosion behavior of aluminum containing iron. Corros. Sci. 1994. Vol. 36. No. 10. P. 1789—1803. DOI: 10.1016/0010938X(94)90132-5.

9. Samuel A.M., Samuel F.H., Doty H.W. Observations on the formation of β—Al5FeSi phase in 319 type Al—Si alloys. J. Mater. Sci. 1996. Vol. 31. No. 20. P. 5529—5539. DOI: 10.1007/BF01159327.

10. Mulazimoglu M.H., Zaluska A., Gruzleski J.E., Paray F. Electron microscope study of Al—Fe—Si intermetallics in 6201 aluminum alloy. Metal. Mater. Trans. A. 1996. Vol. 27. No. 4. P. 929—936. DOI: 10.1007/BF02649760.

11. Syvertsen M. Oxide skin strength on molten aluminum. Metal. Mater. Trans. B. 2006. Vol. 37. No. 3. P. 495—504. DOI: 10.1007/s11663-006-0033-8.

12. ASTM B85 / B85M-18e1. Standard specification for aluminum — alloy die castings. https://www.astm.org/Standards/B85.htm (Accessed 2018).

13. Lucas K.A., Lucas K.A., Clarke H. Corrosion of aluminium—based metal matrix composites. Baldock: Research Studies Press, 1993.

14. Nielssen H., Hufnagel W., Ganoulis G. Aluminium — Taschenbuch. 13. Aufl., Düsseldorf: Aluminium-Verlag GmbH, 1974.

15. Foley R.T. Localized corrosion of aluminum alloys — a review. Corrosion. 1986. Vol. 42. No. 5. P. 277—288. DOI: 10.5006/1.3584905.

16. Sobolev A., Wolicki I., Kossenko A., Zinigrad M., Borodianskiy K. Coating formation on Ti—6Al—4V alloy by micro arc oxidation in molten salt. Materials. 2018. Vol. 11. No. 9. P. 1611—1619. DOI: 10.3390/ma11091611.

17. Wen L., Wang Y., Zhou Y., Guo L., Ouyang J.H. Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process. Corros. Sci. 2011. Vol. 53. No. 1. P. 473—480. DOI: 10.1016/j.corsci.2010.09.061.

18. Wei T., Yan F., Tian J. Characterization and wear—and corrosion—resistance of microarc oxidation ceramic coatings on aluminum alloy. J. Alloys Compd. 2005. Vol. 389. No. 1-2. P. 169—176. DOI: 10.1016/j.jallcom.2004.05.084.

19. Rao K.P., Ram G.J., Stucker B.E. Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings. Scripta Mater. 2008. Vol. 58. No. 11. P. 998—1001.

20. Uludağ M., Kocabaş M., Dışpınar D., Çetin R., Cansever N. Effect of Sr and Ti addition on the corrosion behaviour of Al—7Si—0.3Mg alloy. Arch. Foundry Eng. 2017. Vol. 17. No. 2. P. 125—130. DOI: 10.1515/afe-2017-0063.

21. ASTM B117-18. Standard practice for operating salt spray (fog) apparatus. https://www.astm.org/Standards/B117.htm (Accessed 2018). DOI: 10.1520/B0117-18.

22. De Salazar J.M.G., Urena A., Manzanedo S., Barrena M.I.Corrosion behaviour of AA6061 and AA7005 reinforced with Al2O3 particles in aerated 3.5 % chloride solutions: potentiodynamic measurements and microstructure evaluation. Corros. Sci. 1998. Vol. 41. No. 3. P. 529—545. DOI: 10.1016/S0010-938X(98)00135-8.

23. Acevedo-Hurtado P.O., Sundaram P.A. Corrosion behavior of novel Al—Al2O3 composites in aerated 3.5 % chloride solution. J. Mater. Eng. Perf. 2017. Vol. 26. No. 1. P. 69—75. DOI: 10.1007/s11665-016-2420-x.

24. Sherif E.S.M., Almajid A.A., Latif F.H., Junaedi H. Effects of graphite on the corrosion behavior of aluminum— graphite composite in sodium chloride solutions. Int. J. Electrochem. Sci. 2011. Vol. 6. P. 1085—1099.


Review

For citations:


Finkelstein A.B., Shak A.V., Schaefer A.A. The corrosion of aluminum matrix composite in situ based on Al–7Si–1Fe alloy. Izvestiya. Non-Ferrous Metallurgy. 2019;(6):70-74. (In Russ.) https://doi.org/10.17073/0021-3438-2019-6-70-74

Views: 709


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)