Improving the properties of copper alloys by melt refining and modifying treatment with alkaline-earth metal carbonates
https://doi.org/10.17073/0021-3438-2019-6-34-41
Abstract
The paper analyzes main tasks related to brass melt processing. It provides a comparison of traditional processing methods with the proposed method of alloy quality improvement. The equilibrium conditions for carbonate decomposition reactions are considered when processing the melt in an open and closed ladle. Conditions for the carbonate decomposition reaction are formulated. The study proves that the resulting gaseous product of carbonate decomposition can have a simultaneous flotation effect on the brass melt refining from dissolved gases and non-metallic inclusions. The paper analyzes thermodynamic conditions of slagging impurities by introducing alkali and alkaline earth metal carbonates through the interaction of their oxides with silicon and aluminum oxides in the melt. The study considers the possibility of enhancing the physical and mechanical properties of brass castings due to the modifying effect provided by the formation of calcium, strontium, barium and sodium oxides resulting from dissociation of their carbonates. The paper describes the technology used for brass melt processing with alkaline earth metal carbonates in a pouring ladle, methods for studying the obtained results from the point of view of microstructural analysis and mechanical test values. It is found that the use of carbonates in brass melt processing creates a more favorable microstructure, contributes to the lower average nominal grain size, increases its uniformity, and reduces the likelihood of enlarged α phase formation. Structural parameters of samples were extensively studied with various options of melt processing with carbonates. Mechanical properties of brass samples were studied before and after melt processing with various combinations of alkaline earth metal carbonates. Compositions of carbonate mixtures that have the most favorable integrated effect on the brass strength with a simultaneous increase in plasticity performance were determined. The optimum carbonate mixture composition was chosen experimentally. Processing efficiency was confirmed by industrial tests. The simplicity and other positive features of the proposed technology for refining and modifying brass melt processing with mixtures of alkaline-earth metal carbonates were observed.
About the Authors
V. A. KorovinRussian Federation
Dr. Sci. (Tech.), Associate prof., Department of metallurgical technologies and equipment
603950, Russia, Nizhny Novgorod, Minin str., 26/2
T. d Kurilina
Russian Federation
Senior lecturer, Department of metallurgical technology and equipment
603950, Russia, Nizhny Novgorod, Minin str., 26/2
S. V. Plokhov
Russian Federation
Dr. Sci. (Tech.), Prof., Department of nanotechnology and bio-technology
603950, Russia, Nizhny Novgorod, Minin str., 26/2
V. B. Deev
Russian Federation
Sci. (Tech.), Prof., School of Mechanical Engineering and Automation of Wuhan Textile University ; Chief researcher, Engineering Center «Foundry Technologies and Materials», National University of Science and Technology «MISIS»
430073, Textile Road 1, Wuhan, Hubei Province, China
119049, Russia, Moscow, Leninskii pr., 4.
References
1. Bydalek A.W. The Results of the brass refining process in the reducer conditions. Foundry Eng. A. 2014. Vol. 14. P. 21—24.
2. Harold K.T. Process for refining brass and aluminum scraps: Раt. 4612168 А (US). 1986.
3. Zadiranov A.N., Tkalich A.M. Method of refining copper and copper alloys (options): Pat. 2307874 (RF). 2007 (In Russ.).
4. Brady G.S., Clauser H.R., Vaccari J.A. Brass. In: Materials Handbook. 14-th ed. N.Y.: McGraw-Hill, 1997. Р. 179—187.
5. Hombostel Caleb. Brass. In: Construction Materials: Types, Uses, and Applications. N.Y.: John Wiley and Sons Inc., 1991. Р. 746—751.
6. Shmakov L.V., Cheremiskin V.I., Mochalov N.A., Trubetskoy K.N., Denisov G.A., Mochalov S.N., Kuznetsov A.A. Method of refining copper and copper-based alloys: Pat. 2185455 (RF). 2002 (In Russ.).
7. Bydalek A.W. The Results of the brass refining process in the reducer conditions. Foundry Eng. A. 2014. Vol. 14. P. 21—24.
8. Badmazhapova I.B. Investigation of the process and development of the technology of refining brass with the aim of obtaining cast billets with a regulated content of impurities of silicon, aluminum and lead: Abstract of the Diss. of PhD. Moscow: MISIS, 2009 (In Russ.).
9. Zadiranov A.N., Tkalich A.M. Method of refining copper and copper alloys (options): Pat. 2307874 (RF). 2007 (In Russ.).
10. Impurities in non-ferrous metals. Copper and its alloys. URL: https://markmet.ru/tehnologiya_metallov/primesiv-tsvetnykh-metallakh (accessed: 01.02.2019) (In Russ.).
11. Shmakov L.V., Cheremiskin V.I., Mochalov N.A., Trubetskoy K.N., Denisov G.A., Mochalov S.N., Kuznetsov A.A. Method of refining copper and copper-based alloys: Pat. 2185455 (RF). 2002 (In Russ.).
12. Chaikina N.V., Chaikin V.A., Zadrutsky S.P., Nemenyuk B.M., Rozum V.A. Refining mixture with a modifying effect based on carbonates. Zagotovitel’nye proizvodstva v mashinostroenii. 2012. No. 1. Р. 3—7 (In Russ.).
13. Badmazhapova I.B. Investigation of the process and development of the technology of refining brass with the aim of obtaining cast billets with a regulated content of impurities of silicon, aluminum and lead: Abstract of the Diss. of PhD. Moscow: MISIS, 2009 (In Russ.).
14. Korovin V.A., Ulyanov V.A., Tokarnikova O.V Sluzov P.A. Features of the use of refining-modifying flux when casting brass. In: Collection of materials of the XI Сongress of foundry workers of Russia. Yekaterinburg: UPI, 2013. Р. 112—115 (In Russ.).
15. Impurities in non-ferrous metals. Copper and its alloys. URL: https://markmet.ru/tehnologiya_metallov/primesiv-tsvetnykh-metallakh (accessed: 01.02.2019) (In Russ.).
16. Kondratiev V.A., Libenson M., Tkachev M.M., Valov A.N., Ryazanov V.I. Method of modifying iron-containing copper alloys: Pat. 337194 (USSR). 1972 (In Russ.).
17. Chaikina N.V., Chaikin V.A., Zadrutsky S.P., Nemenyuk B.M., Rozum V.A. Refining mixture with a modifying effect based on carbonates. Zagotovitel’nye proizvodstva v mashinostroenii. 2012. No. 1. Р. 3—7 (In Russ.).
18. Kroschwitz J.I., Howe-Grant M. (eds.). Copper alloys. In: Encyclopedia of chemical technology. 4-th ed. N.Y.: John Wiley and Sons, Inc., 1993. Р.179—195.
19. Korovin V.A., Ulyanov V.A., Tokarnikova O.V Sluzov P.A. Features of the use of refining-modifying flux when casting brass. In: Collection of materials of the XI Сongress of foundry workers of Russia. Yekaterinburg: UPI, 2013. Р. 112—115 (In Russ.).
20. Kondracki M., Gawroński J., Szajnar J. TDA method application for structure evaluation of non-leaded fixture brasses. Archives of Foundry. 2006. Vol. 6 (19). Р. 149—156.
21. Kondratiev V.A., Libenson M., Tkachev M.M., Valov A.N., Ryazanov V.I. Method of modifying iron-containing copper alloys: Pat. 337194 (USSR). 1972 (In Russ.).
22. Rzadkosz S. Influence of the chemical compositions and casting parametrers for the structure and properties of magnesia-tin brass alloys. Archives of Foundry. 2001. Vol. 1(1). Р. 299—304.
23. Kroschwitz J.I., Howe-Grant M. (eds.). Copper alloys. In: Encyclopedia of chemical technology. 4-th ed. N.Y.: John Wiley and Sons, Inc., 1993. Р.179—195.
24. Biernat S., Bydałek A.W. The estimation of quality refining covers. Foundry Eng. A. 2010. Vol. 10. Р. 181—188.
25. Kondracki M., Gawroński J., Szajnar J. TDA method application for structure evaluation of non-leaded fixture brasses. Archives of Foundry. 2006. Vol. 6 (19). Р. 149—156.
26. Davis J.R. Copper and copper alloys. In: Metals handbook desk edition. 2-nd ed. ASM International, 1998. Р. 506—558.
27. Rzadkosz S. Influence of the chemical compositions and casting parametrers for the structure and properties of magnesia-tin brass alloys. Archives of Foundry. 2001. Vol. 1(1). Р. 299—304.
28. Bydałek A.W., Schlafka P., Najman K. The results of copper alloys refining processes in the reduction conditions. Foundry Eng. A. 2008. Vol. 8. Р. 219—223.
29. Biernat S., Bydałek A.W. The estimation of quality refining covers. Foundry Eng. A. 2010. Vol. 10. Р. 181—188.
30. Kozana J., Rzadkosz S., Piękoś M. Influence of the selected alloy additions on limiting the phase γ-formation in Cu—Zn alloys. Foundry Eng. A. 2010. Vol. 10(1). Р. 221—225.
31. Davis J.R. Copper and copper alloys. In: Metals handbook desk edition. 2-nd ed. ASM International, 1998. Р. 506—558.
32. Zhao Z.F., Qi J. G., Dai Sh., Zhang D.J., Yang H.M., Wang J.Zh. Effects of different melt modification techniques on the structure and properties of silicon brass. Adv. Mater. Res. 2011. Vol. 299-300. Р. 390—394.
33. Bydałek A.W., Schlafka P., Najman K. The results of copper alloys refining processes in the reduction conditions. Foundry Eng. A. 2008. Vol. 8. Р. 219—223.
34. Shuai G.W., Li Y., Guo Z.H. Effects of grain refiner and cooling rate on solidification structure of H62 brass. Adv. Mater. Res. 2013. Vol. 785-786. Р. 67—71.
35. Kozana J., Rzadkosz S., Piękoś M. Influence of the selected alloy additions on limiting the phase γ-formation in Cu—Zn alloys. Foundry Eng. A. 2010. Vol. 10(1). Р. 221—225.
36. Korovin V.A., Leushin I.O., Kurilina T.D. Modifying mixture. Application No. 2019109453. (RF). 2019 (In Russ.).
37. Zhao Z.F., Qi J. G., Dai Sh., Zhang D.J., Yang H.M., Wang J.Zh. Effects of different melt modification techniques on the structure and properties of silicon brass. Adv. Mater. Res. 2011. Vol. 299-300. Р. 390—394.
38. Volkov A.I., Zharsky I.M. Great chemical reference. Minsk: Sovremennaya shkola, 2005 (In Russ.).
39. Shuai G.W., Li Y., Guo Z.H. Effects of grain refiner and cooling rate on solidification structure of H62 brass. Adv. Mater. Res. 2013. Vol. 785-786. Р. 67—71.
40. Kurilina T.D., Korovin V.A., Leushin I.O. Determination of thermodynamic suitability of carbonates for refining. In: Proc. of the 12-th Inter. Sci. Pract. Conf. «Foundry production today and tomorrow». SPb.: Kult-inform-press, 2018. Р. 235—240.
41. Korovin V.A., Leushin I.O., Kurilina T.D. Modifying mixture. Application No. 2019109453. (RF). 2019 (In Russ.).
42. Nikolsky B.N., Rabinovich V.A. Chemist handbook. Moscow: Kniga po trebovaniyu, 2013 (In Russ.).
43. Volkov A.I., Zharsky I.M. Great chemical reference. Minsk: Sovremennaya shkola, 2005 (In Russ.).
44. Kurilina T.D., Korovin V.A., Leushin I.O. Determination of thermodynamic suitability of carbonates for refining. In: Proc. of the 12-th Inter. Sci. Pract. Conf. «Foundry production today and tomorrow». SPb.: Kult-inform-press, 2018. Р. 235—240.
45. Nikolsky B.N., Rabinovich V.A. Chemist handbook. Moscow: Kniga po trebovaniyu, 2013 (In Russ.).
Review
For citations:
Korovin V.A., Kurilina T.d., Plokhov S.V., Deev V.B. Improving the properties of copper alloys by melt refining and modifying treatment with alkaline-earth metal carbonates. Izvestiya. Non-Ferrous Metallurgy. 2019;(6):34-41. (In Russ.) https://doi.org/10.17073/0021-3438-2019-6-34-41