Mechanism of oxides reduction during bubbling of copper-smelting slags by CO–CO2 gas mixtures
https://doi.org/10.17073/0021-3438-2019-6-13-22
Abstract
The paper suggests a mechanism of simultaneous oxide reduction from multicomponent copper-smelting slags during their bubbling with CO–CO2 reducing mixtures and provides a numerical algorithm developed to implement this mechanism as a mathematical model. The first feature of the suggested mechanism is a statement that the total speed of the overall reduction process is determined by CO consumption during its interaction with oxygen ions formed in slag oxide dissociation. The second feature is a statement about equilibrium achieved between slag, alloy and gaseous phase according to the system oxidizing potential reached at every instant. The paper demonstrates a satisfactory agreement between calculated and experimental data obtained when reducing industrial coppersmelting slags at 1300 °С and СО/СО2 = 4, 6, 156, and using the first-degree kinetic equation regarding the difference between initial and equilibrium CO contents in the gaseous phase. A generalized kinetic constant of the multicomponent slag reduction reaction rate is calculated as k = 2.6·10–7, moles CO /(cm2 · sec·%) at 1300 °С. It is shown that during industrial multicomponent slag reduction, reduction speed of copper (I) oxide and magnetite are high and close to maximal ones as early as at the first minutes of slag bubbling with reducing gas. At the same time, for Fe(II), lead and zinc oxides they are low at the first minutes of the process, and increase gradually to reach their maximum, and then decrease again up to near-zero values as the supplied gas and melt come to equilibrium. Generally, oxide reduction speed naturally decreases with approaching to equilibrium between the initial gas and liquid phases, and this should be taken into account when designing continuous slag depletion processes.
Keywords
About the Authors
A. A. KomkovRussian Federation
Cand. Sci. (Tech.), Docent, Department of non-ferrous metals and gold
119049, Russia, Moscow, Leninskii pr., 4
R. I. Kamkin
Russian Federation
Cand. Sci. (Tech.), Head of Technical center
125167, Russia, Moscow, Leningradskii pr., 37A-4
References
1. Komkov A.A., Kamkin R.I. The behavior of copper and impurities during bubbling of copper-smelting slags with СО—СО2 gas mixture. Tsvetnye metally. 2011. No. 6. P. 26—31 (In Russ.).
2. Romenets V.A., Valavin V.S., Usachev A.B., Karabasov Yu.S.,Balabanov A.V. ROMELT process. Moscow: MISIS, 2005 (In Russ.).
3. Min D.J., Han J.W., Chung W.S. A study of the reduction rate of FeO in slag by solid carbon. Metal. Mater. Trans. B. 1999. Vol. 30. P. 772—775.
4. Parra R., Wilkomirsky I., Allibert M. Direct reduction of copper-iron-silicon oxide melts. In: Mater. Inter. conf. «Copper 99 — Cobre 99» (USA, Arizona, Phoenix, 10—13 Oct. 1999). Warrendale: TMS, 1999. Vol. 4. P. 553—570.
5. Halder S., Fruehan R.J. Reduction of iron-oxide-carbon composites: Pt. 1. Estimation of the rate constants. Metal. Mater. Trans. B. 2008. Vol. 39. P. 784—795.
6. Corbari R., Matsuura H., Halder S., Walker M., Fruehan R.J. Foaming and the rate of the carbon-iron oxide reaction in slag. Metal. Mater. Trans. B. 2009. Vol. 40. P. 772—775.
7. Madej P., Kucharski M. Influence of temperature on the rate of copper recovery from the slag of the flash directto-blister process by a solid carbon reducer. Arch. Metal. Mater. 2015. Vol. 60. P. 1663—1671.
8. Hayes P.C., Okongwu D.A., Togyri J.M. Some observation of the reaction between molten oxides and solid carbon. Canad. Metal. Quart. 1995. Vol. 34. P. 27—36.
9. Warczok A., Utigard T.A. Fayalite slag reduction by solid graphite. Canad. Metal. Quart. 1998. Vol. 37. P. 27—39.
10. Huaiwei Z., Xiaoyan S., Bo Z., Xin H. Reduction of molten copper slags with mixed CO—CH4—Ar gas. Metal. Mater. Trans. B. 2014. Vol. 45. P. 582—589.
11. Hu X., Matsuura H., Tsukihashi F. Interfacial reaction between CO2—CO gas and molten iron oxide containing P2O5. Metal. Mater. Trans. B. 2006. Vol. 37. P. 395—401.
12. Barati M., Coley K.S. Kinetics of CO—CO2 Reaction with CaO—SiO2—FeOx melts. Metal. Mater. Trans. B. 2005. Vol. 36. P. 169—178.
13. Li Y., Ratchev I.P. Rate of interfacial reaction between molten CaO—SiO2—Al2O3—FexO and CO—CO2. Metal. Mater. Trans. B. 2002. Vol. 33. P. 651—660.
14. Utigard T., Sanchez G., Manriquez J., Luraschi A., Diaz C., Cordero D., Almendras E. Reduction kinetics of liquid iron oxide—containing slags by carbon monoxide. Metal. Mater. Trans. B. 1997. Vol. 28. P. 821—826.
15. Xie D., Belton G.R. Kinetics of reduction of ferric iron in Fe2O3—CaO—SiO2—Al2O3 slags under argon, CO— CO2, or H2—H2O. Metal. Mater. Trans. B. 2003. Vol. 34.P. 225—234.
16. Sorokin M.L., Andryushechkin N.A., Nikolaev A.G. Thermodynamics of the Cu—Fe system. Izv. vuzov. Tsvet. Metallurgiya. 1996. Vol. 6. P. 10—14 (In Russ.).
17. Ladygo E.A. Copper and nickel distribution patterns between the depleting melt products in reducing conditions: Abstr. of a Thesis Diss. of PhD (Tech.). Moscow: MISIS, 2003 (In Russ.).
18. Cockcroft S.L., Richards G.G., Brimacombe J.K. Mathematical model of lead behaviour in the zinc slag fuming process. Canad. Metal. Quart. 1988. Vol.27. P. 27— 40.
19. Vanyukov A.V., Bystrov V.P., Vaskevich A.D., Bruek V.N., Zaitsev V.Ya.,. Kirillin I.I., Komkov A.A., Mantsevich N.M., Miklin N.A., Sorokin M.L., Fedorov A.N., Tsesarsky V.S., Shubsky A.G. Smelting in the liquid bath. Moscow: Metallurgiya, 1988 (In Russ.).
20. Vaskevich A.D., Sorokin M.L., Kaplan V.A. General thermodynamic model of copper solubility in slags. Tsvet. metally. 1982. Vol. 10. P. 22—26 (In Russ.).
21. Komkov A.A., Vaskevich A.D. Model of the biphasic gasliquid flow. Izvestiya AN USSR. Мetally. 1989. Vol. 6. P. 24—29 (In Russ.).
22. Komkov A.A., Kamkin R.I., Kuznetsov A.V., Karyaev V.I. Specifics of copper recovery from the slags during reducing in bubbling conditions. Tsvet. metally. 2018. Vol. 11. P. 21—26 (In Russ.).
23. Thermodynamic database FactSage. URL: http://www.factsage.com (accessed: 17.02.2018).
Review
For citations:
Komkov A.A., Kamkin R.I. Mechanism of oxides reduction during bubbling of copper-smelting slags by CO–CO2 gas mixtures. Izvestiya. Non-Ferrous Metallurgy. 2019;(6):13-22. (In Russ.) https://doi.org/10.17073/0021-3438-2019-6-13-22