Intensification of sulfuric acid leaching of copper from sulfide concentrates with the use of ozone and iron ions
https://doi.org/10.17073/0021-3438-2019-4-6-4-12
Abstract
The studies were carried out in order to establish the patterns of sulfuric acid dissolution of metal sulfides with the participation of environmentally friendly oxidizing agents – ozone and iron (III) ions, to determine the parameters and intensification modes of metal extraction into the solution, reduce oxidizing agent consumption. The purpose of the studies was to develop the least environmentally intense, cost-effective methods for extracting non-ferrous metals from sulfide ores, concentrates and industrial waste. For study, we used copper sulfide concentrate of flotation concentration of ore from the Udokan deposit with a grain size of 90 % –0.074 mm with a copper content of 24.5 %, ozone with a concentration of 80–180 mg/l in a gas mixture with oxygen, fed to the reactor at a speed of 1–5 ml/s. Patterns were studied in the range of sulfuric acid concentration of 20–100 g/l, Fe(III) ion concentration of 7.8–29.2 g/l, temperature of 18–60 °C in stirred reactors with the solid-to-liquid ratio of 1.1÷1.5. It was found that the use of Fe(III) ions and ozone can significantly intensify copper recovery from sulfides to the sulfuric acid solution. Copper extraction from sulfides increases in proportion to the 2.4-fold increase in the concentration of Fe(III) from 7.8 to 29.25 g/l. Ozone effectively oxidizes Fe(II) and regenerates Fe(III) ions. With the rising temperature and iron concentration, ozone consumption for oxidation increases:0.22 mol of O3 is consumed per 1 mol of Fe that is more than the theoretical value of 0.17. An increase in the rate of copper extraction from sulfides using ozone is achieved by increasing the temperature from 20 to 50 °C (1.4 times), ozone concentration from 85 to 180 mg/l (3 times), feed rate of ozone-oxygen mixture from 1 to 5 ml/s (2.7 times at 20 °C, 3.9 times at 50 °C), by adding Fe(III) ions (~1.5 times at 50 °C [Fe(III)] = 10 g/l). The highest oxidizing activity in a sulfuric acid solution is provided by ozone decomposition products at a temperature of 50 °C when its solubility decreases. Ozone utilization coefficient and specific ozone consumption for extracted copper decrease with an increase in the ozone-oxygen mixture supply rate with oxygen from 1 to 5 ml/s (1.42 times at 20 °C, 1.16 times at 50 °C) and increase with rising temperature and Fe(III) concentration due to the rapid ozone decomposition and unproductive use for iron oxidation.
About the Author
L. N. KrylovaRussian Federation
Cand. Sci. (Tech.), Leading researcher, Department «Enrichment and processing of minerals and technogenic raw materials»
119049, Russia, Moscow, Leninskii pr., 4
References
1. Peacey J., Guo X.J., Robles E. Copper hydrometallurgycurrent status, preliminary economics, future directions on positioning versus smelting. Trans. Nonferr. Met. Soc. China. 2004. Vol. 14. No. 3. P. 560—568.
2. Shijie Wang. Copper leaching from chalcopyrite concentrates. J. Miner. Met. Mater. Soc. 2005. Vol. 57. No. 7. P. 48—52.
3. Havlik T., Dvorscikova J., Ivanova Z., Kammel R. Sulphuric acid chalcopyrite leaching using ozone as oxidant. Metallurgie. 1999. Vol. 53. No. 1-2. P. 57—60.
4. Antonijevic M., Bogdanovic M. Investigation of the leaching of chalcopyritic ore in acidic solutions. Hydrometallurgy. 2004. Vol. 73. No. 3-4. P. 45—256.
5. Krylova L.N., Moshchanetsky P.V., Shirinya N.V. Leaching of metals from refractory intermediate product of flotation of copper-zinc pyrite ores. Obogashchenie rud. 2015. No. 6. Р. 14—19. DOI: 10.17580/or.2015.06.03 (In Russ.).
6. Lunin B.V., Popovich M.G., Tkachenko S.N. Physical chemistry of ozone. Moscow: MGU, 1998 (In Russ.).
7. Merkulova V.P., Lovchikov V.S., Ivanovsky M.D. Oxidation of sulfide minerals by ozonated sulfate solutions. In: Proceedings of the Moscow Institute of Steel and Alloys. Iss. 111: Theory and practice of processes for producing heavy non-ferrous and noble metals. Moscow: Metallurgiya, 1978. P. 83—87 (In Russ.).
8. Chtyan G.S. The mechanism of the processing of copper electrolyte slag by ozone. In: Materials of the Meeting Chemistry and Technology of Rare Elements. Еrevan: ЕSU, 1978. P. 122—124 (In Russ.).
9. Havlik T., Skrobian M. Acid leaching of chalcopyrite in the presence of ozone. Canad. Metal. Quart. 1990. Vol. 29. No. 2. Р. 133—139. DOI: 10.1179/000844390795576102.
10. Babayan G.G. Decontamination of electrolyte slag from copper chemistry using ozone. In: Mater. 2-nd Interuniversity. Conf. on Ozone. Moscow: MGU, 1977. P. 153—156 (In Russ.).
11. Krylova L.N. A new way to leach sulfide concentrates is peroxone-salt. Metallurg. 2010. No. 6. P. 66—68 (In Russ.).
12. Horvath M., Bilitzky L., Hutter J. Ozone. Budapest: Akadémiai Kiadó, 1985.
13. Аkoрyan S.Z. The study of ozone oxidation of sulfides of molybdenum, tungsten, rhenium, copper in the aquatic environment: Abstract. dis. ... Cand. Sci. (Chem.). Erevan: ESU, 1979 (In Russ.).
14. Kolesova O.V., Ostrovsky S.V., Basov V.N., Zipper A.A. Exploratory studies on the extraction of chromium compounds from sludges of chromate production. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya. 2014. No. 4. P. 76—90 (In Russ.).
15. Merwe W., Beukes J., Zy P.G. Cr(VI) formation during ozonation of Cr-containing materials in aqueous suspension — implications for water treatment. Water SA. 2012. Vol. 38. No. 4. P. 505—510. DOI: 10.4314/wsa.v38i4.4.
16. Tian Q.H., Wang H., Xin Y.T., Li D. Ozonation leaching of a complex sulfidic antimony ore in hydrochloric acid solution. Hydrometallurgy. 2016. Vol.159. P. 126—131. DOI: 10.1016/j.hydromet.2015.11.011.
17. Guo X.Y., Wang H., Xin Y.T., Tian Q.H. Leaching kinetics of antimony-bearing complex sulfides ore in hydrochloric acid solution with ozone. Trans. Nonferr. Met. Soc. China. 2017. No. 7(9). Р. 2073—2081. DOI: 10.1016/S10036326(17)60232-2.
18. Vinyals O.J., Roca V.A., Cruells C.M., Casado G.J., Juan M.E. Selective metal leaching process: Pat. 1281779 (EP). 2003.
19. Torres R., Lapidus G.T. Platinum, palladium and gold leaching from magnetite ore, with concentrated chloride solutions and ozone. Hydrometallurgy. 2016. Vol. 166. Р. 185—194. DOI: 10.1016/j.hydromet.2016.06.009.
20. Qian Kun Jing, Xing Yu Liu, Jian Kang Wen. A novel iron oxidation process in zinc leaching solution by ozone. Adv. Mater. Res. 2014. Vol. 900. P. 35—38. DOI: 10.4028/www.scientific.net/AMR.900.35.
21. Carrillo-Pedroza F.R., Soria-Aguilar M.J., Salinas-Rodríguez E., Martínez-Luevanos A., Pecina-Treviño T.E., Dávalos-Sánchez A. Oxidative hydrometallurgy of sulphide minerals. Recent Res. Metal. Eng. — From Extraction to Forming. 2012. P. 25—42. DOI: 10.5772/36107.
22. Carrillo-Pedroza1 F.R., Soria-Aguilar M. J., Pecina-Trevino T.Е., Luévanos A.M., Castillo M.S. Treatment of sulfide minerals by oxidative leaching with ozone. Miner. Process. Extract. Met. Rev. 2012. Vol. 33. P. 269—279. DOI: 10.1080/08827508.2011.584093.
Review
For citations:
Krylova L.N. Intensification of sulfuric acid leaching of copper from sulfide concentrates with the use of ozone and iron ions. Izvestiya. Non-Ferrous Metallurgy. 2019;(6):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-6-4-12