Binary niobium alloying with low-melting metals by precipitation of nanoparticles
https://doi.org/10.17073/0021-3438-2019-5-40-48
Abstract
Binary niobium alloys with tin, lead and cadmium were obtained by precipitation of nanosized metal particles dispersed in lowpressure plasma using the thermal fluctuation melting effect. The thermal fluctuation melting effect implies that a small particle is in the quasi-liquid state up to a certain critical size which, if exceeded due to steam condensation or fusion (coalescence) of other quasiliquid particles, results in the drop crystallization. The critical sizes of particles being in the quasi-liquid state and capable of coalescing and forming an alloy – solid solution – were found: Nb – 2.1÷2.2 nm, Sn – 0.4 nm, Pb – 0.6 nm, Cd – 3.2 nm. The following concentrations were determined as the boundary of a range where solid metal solutions exist in niobium, at%: Sn – 25.5, Pb – 23.0, Cd – 64.5. The solid solution is a crystal lattice of the niobium as a matrix metal comprising lead, cadmium and tin atoms. The Nb matrix lattice parameters change with additional stresses arising in it up to its destruction due to the fact that the atom sizes of embedded metals differ from those of matrix niobium. The body-centered cubic lattice parameters of solid solutions increase with the rising Pb, Cd и Sn concentrations since they have larger atomic sizes as compared to niobium. A change in the crystal lattice growth rate was observed for lead and cadmium alloys due to a change in the impurity atom arrangement in the niobium matrix lattice. The critical sizes of metal particles obtained were used to estimate surface tension parameters at the crystal/melt interface as follows: 1.17–1.22 J/m2 for Nb, 1.15·10–2 – for Sn; 1.48·10–2 – for Pb; 0.142 – for Cd. Refractory niobium alloying with tin, lead and cadmium is an example of using the size effect to produce new materials.
Keywords
About the Authors
V. N. VolodinKazakhstan
Dr. Sci. (Phys.-Math.), Dr. Sci. (Tech.), prof., principal scientist of Laboratory of vacuum processes; principal scientist of Laboratory of ion-plasma technology.
050010, Republic of Kazakhstan, Almaty, Shevchenko str., 29/133
050032, Republic of Kazakhstan, Almaty, Ibragimov str., 1
Yu. Zh. Tuleushev
Kazakhstan
Cand. Sci. (Tech.), leading researcher of Laboratory of ion-plasma technology.
050032, Republic of Kazakhstan, Almaty, Ibragimov str., 1
S. A. Trebukhov
Kazakhstan
Cand. Sci. (Tech.), assistant prof., deputy general director.
050010, Republic of Kazakhstan, Almaty, Shevchenko str., 29/133
A. V. Nitsenko
Kazakhstan
Cand. Sci. (Tech.), head of the Laboratory of vacuum processes.
050010, Republic of Kazakhstan, Almaty, Shevchenko str., 29/133
N. M. Burabaeva
Kazakhstan
Cand. Sci. (Tech.), senior researcher of Laboratory of vacuum processes.
050010, Republic of Kazakhstan, Almaty, Shevchenko str., 29/133
References
1. Векшинский С.А. Новый метод металлографического исследования сплавов. М.: Огиз-Гостехиздат, 1944. Vekshinskii S.A. New method for metallographic study of alloys. Moscow: Ogiz-Gostekhizdat, 1944 (In Russ.).
2. Жданов Г.С., Верцнер В.Н. Непосредственное наблюдение процессов конденсации и кристаллизации ртути. Физика твердого тела. 1966. Т. 8. No. 4. P. 1021— 1027. Zhdanov G.S., Vertsner V.N. Direct observation of the processes of condensation and crystallization of mercury. Fizika tverdogo tela. 1966. Vol. 8. No. 4. P. 1021—1027 (In Russ.).
3. Peppiatt S.J. The melting of small particles. II. Bismuth. Proc. Royal Soc. A. London. 1975. Vol. A345. No. 1642. P. 401—412.
4. Berty J., David M.J., Lafourcade L. Etude de la surfusion de films mines de bismuth par diffracyon des electrons. Thin Solid Films. 1977. Vol. 46. No. 2. P. 177—185.
5. Жданов Г.С. Температурный гистерезис фазового перехода и механизм кристаллизации тонких металлических пленок. Физика твердого тела. 1977. Vol. 19 No. 1. С. 299—301. Zhdanov G.S. Temperature hysteresis of the phase transition and the mechanism of crystallization of thin metal films. Fizika tverdogo tela. 1977. Vol. 19. No. 1. P. 299—301 (In Russ.).
6. Овсиенко Д.Е., Маслов В.В., Костюченко В.П. Переохлаждение никеля и кобальта в малых объемах. Кристаллография. 1971. Vol. 16. No. 2. С. 405—407. Ovsienko D.E., Maslov V.V., Kostyuchenko V.P. Supercooling of nickel and cobalt in small volumes. Kristallografiya. 1971. Vol. 16. No. 2. P. 405—407 (In Russ.).
7. Buffat Ph., Borel J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A. 1976. Vol. 13. No. 6. P. 2287—2298.
8. Perepezko J.H., Rasmussen D.H. Solidification of highly supercooled liquid metal and alloys. J. Non-Cryst. Solids. 1993. Vol. 156—158. P. 463—472.
9. Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006. Vol. 35. P. 583—592. DOI: 10.1039/b502142c.
10. Zou C., Gao Y., Yang B., Zhai Q. Size dependent melting properties of Sn nanoparticles by chemical reduction synthesis. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. No. 2. P. 248—253.
11. Jiang H., Moon K., Dong H. Size dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 2006. Vol. 429. No. 4. P. 492—496.
12. Stowell M.J. The solid-liquid interfacial free energy of lead from supercooling data. J. Theor. Exp. Appl. Phys. 1970. Vol. 22. No. 176. P. 1—6.
13. Qingshan F., Yongqiang X., Zixiang C. Size — and shape — dependent surface thermodynamic properties of nanocrystals. J. Phys. Chem. Solids. 2018. Vol. 116. P. 79—85.
14. Mu J., Zhu Z.W., Zhang H.F. Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix. J. Appl. Phys. 2012. Vol. 111. No. 4. P. 043515 (1—4).
15. Luo W., Su K., Li K., Li Q. Connection between nanostructured materials’ size dependent melting and thermodynamic properties of bulk materials. Solid State Commun. 2011. Vol. 151. No. 3. Р. 229—233.
16. Родунер Э. Размерные эффекты в наноматериалах. М.: Техносфера, 2010. Roduner E. Dimensional effects in nanomaterials. Moscow: Tekhnosfera, 2010 (In Russ.).
17. Takagi M. Electron-diffraction study of liquid-solid transition of thin metals films. J. Appl. Phys. 1954. Vol. 9. No. 3. P. 359—369.
18. Pocza J.F. Investigation of nucleation by «in situ» technique. In: Int. Conf. Phys. Chem. Semicond. Heterojunct. and Layer Struct. (Budapest). 1970. Vol. 3. P. 61—78.
19. Скрипов В.П., Коверда В.П. Спонтанная кристаллизация переохлажденных жидкостей. М.: Наука, 1984. Skripov V.P., Koverda V.P. Spontaneous crystallization of supercooled liquids. Moscow: Nauka, 1984 (In Russ.).
20. Диаграммы состояния двойных металлических систем: Справочник. Под ред. Н.П. Лякишева. М.: Машиностроение, 2001. Т. 2. Кн. 1. С. 529, 551. State diagrams of double metallic systems. Ed. N.P. Lyakishev. Moscow: Mashinostroenie, 2001. Vol. 2. Iss. 1. P. 529, 551 (In Russ.).
21. Володин В.Н. Фазовый переход жидкость-пар в двойных системах кадмия. Алматы: ОПНИ—ИЯФ, 2013. С. 151, 153, 184. Volodin V.N. Liquid-vapor phase transition in double cadmium systems. Almaty: OPNI — IYaF, 2013. P. 151, 153, 184 (In Russ.).
22. Кан Р.У., Хаазен П. Физическое металловедение. М.: Металлургия, 1987. Т. 1, 2. Kan R.U., Haazen P. Physical metallurgy. Moscow: Metallurgiya, 1987. Vol. 1, 2 (In Russ.).
23. Володин В.Н., Тулеушев Ю.Ж., Ниценко А.В., Бурабаева Н.М. Размерный эффект при формировании сплава ниобия с кадмием ультрадисперсными частицами при низкой температуре. Комплекс. использ. минер. сырья. 2018. No. 4. P. 98—104. Volodin V.N., Tuleushev Ju.Zh., Nitsenko A.V., Burabaeva N.M. Dimensional effect in forming the niobium alloy with cadmium ultradispersed particles with low temperature. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2018. No. 4. P. 98—104 (In Russ.).
24. Физические величины: Справочник. Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. С. 99, 289. Physical quantities. Ed. I.S. Grigor’ev, E.Z. Meilikhov. Moscow: Energoatomizdat, 1991. P. 99, 289 (In Russ.).
Review
For citations:
Volodin V.N., Tuleushev Yu.Zh., Trebukhov S.A., Nitsenko A.V., Burabaeva N.M. Binary niobium alloying with low-melting metals by precipitation of nanoparticles. Izvestiya. Non-Ferrous Metallurgy. 2019;(5):40-48. (In Russ.) https://doi.org/10.17073/0021-3438-2019-5-40-48