Formation of ledge in aluminum electrolyzer
https://doi.org/10.17073/0021-3438-2019-5-23-31
Abstract
A model unit simulating the actual conditions of electrolytic aluminum production was used to conduct an experimental study of ledge to determine its dynamic behavior (formation/dissolution) depending on the electrolyte overheating temperature, lining thermal resistance and cryolite-alumina electrolyte composition. A window was mounted in the front wall of the unit housing to change the lining material. Ledge is formed due to the heat flow generated by the temperature difference between the electrolyte and electrolyzer walls. The electrolyte cryolite ratio (CR) varied in the range of 2.1–2.5. The alumina concentration in the electrolyte did not exceed 4.5 wt.%. Shape change in the electrolyzer working space during electrolysis was determined by the thickness of the formed ledge on the walls and bottom. The dynamic ledge formation in the experimental cell begins at the overheating of 3–4 degrees. It was found that with a decrease in the thermal resistance of the lining material from 16 to 14 m2/W at the same overheating temperature, the side ledge with a greater thickness was formed, however, the decrease in the thermal resistance hardly affected its thickness when the ledge has been already formed. As in the industrial electrolyzer, the ledge profile formed in the experimental cell can be conditionally divided into three zones: bottom ledge, metal/electrolyte interface ledge and side ledge. The dynamic behavior of the side ledge was different from the bottom ledge: the higher the CR, the thicker the side ledge and the thinner the bottom ledge. Chemical analysis of components in the dry knockout showed that the CR and Al2O3 concentration increase throughout the cell height from top to bottom. It was concluded that the side ledge has a heterogeneous composition depending on the electrolyte composition and cooling rate.
About the Authors
A. M. IvanovaRussian Federation
Cand. Sci. (Tech.), head.
660025, Russia, Krasnoyarsk, Shelkovaya str., 10
P. A. Arkhipov
Russian Federation
Cand. Sci. (Chem.), senior researcher of Laboratory of the electrode processes.
620990, Russia, Yekaterinburg, Akademicheskaya str., 20
A. V. Rudenko
Russian Federation
Postgraduate student, research scientist of Laboratory of pyrochemical processes and electrochemical technologiesm.
620990, Russia, Yekaterinburg, Akademicheskaya str., 20
O. Yu. Tkacheva
Russian Federation
Dr. Sci. (Chem.), head of Laboratory of the electrode processes; professor of the Department of electrochemical production technology.
620990, Russia, Yekaterinburg, Akademicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19
Yu. P. Zaikov
Russian Federation
Dr. Sci. (Chem.), scientific head; head of the Department of electrochemical production technology.
620990, Russia, Yekaterinburg, Akademicheskaya str., 20
620002, Russia, Yekaterinburg, Mira str., 19
References
1. Сизяков В.М., Фещенко Р.Ю., Бажин В.Ю., Патрин Р.К., Сизяков В.М. Особенности разрушения подины высокоамперного электролизера. Новые огнеупоры. 2013. No. 5. С. 5—8. Sizyakov V.M., Feshchenko R.Yu., Bazhin V.Yu., Patrin R.K., Sizyakov V.M. Features of the high-current electrolyzer bottom destruction. Novye ogneupory. 2013. No. 5. P. 5—8 (In Russ.).
2. Yin E., Liu Y., Xi C., Zhang J. Developing the GP-320 cell technology in China. Light Metals. 2001. P. 213—218.
3. Zeng S. Analysis of the start-up of Q-350 prebaked aluminium reduction cell. Light Metals. 2006. P. 271—275.
4. Kvande H. Preheating, start-up and early operation of Hall-Heroult cells. In: 10th Intern. course on process metallurgy of aluminium (Trondheirn, Norway, 1991). P. 15—48.
5. Sorlie M., Oye H. Cathodes in aluminium electrolysis. 3-rd ed. Düsseldorf: Aluminium-Verlag Marketing & Kommunikation, 2010.
6. Vallea A., Lenis V. Prediction of ledge profile in Hall- Heroult cells. Light Metals. 1995. P. 309—313.
7. Thonstad J., Rolseth S. Equilibrium between bath and side ledge in aluminium cells. Basic principle. Light Metals. 1983. P. 415—425.
8. Thonstad J., Solheim A. Heat transfer coefficients between bath and side ledge. Light metals. 1983. P. 425—435.
9. Solheim A. Towards the proper understanding of sideledge facing the metal in aluminum cells? Light Metals. 2006. P. 439—443.
10. Solheim A. Some aspects of heat transfer between bath and sideledge in aluminum reduction cells. Light Metals. 2011. P. 381—386.
11. Solheim A., Rolseth S., Skybakmoen E., Støen L., Sterten A., Store T. Liquidus temperatures for primary crystallization of cryolite in molten salt systems of interest for the aluminium electrolysis. Met. Trans. B. 1996. Vol. 27B. P. 739—744.
12. Solheim A. Crystallization of cryolite and alumina at the metal-bath interface in aluminium reduction cells. Light Metals. 2002. P. 225—230.
13. Peacey J.G., Medlin G.W. Cell sidewall studies at Noranda Aluminium. Light Metals. 1979. P. 475—480.
14. Haupin W.E. Calculating thickness of containing walls frozen from melt. JOM. 1971. Vol. 23. No. 7. P. 41—44.
15. Данилюк И.И. О задаче Стефана. Успехи матем. наук. 1985. Т. 40. Вып. 5. С. 133—185. Danilyuk I.I. About the Stefan task. Uspekhi matematicheskikh nauk. 1985. Vol. 40. Iss. 5. P. 133—185 (In Russ.).
16. Самарский А.А., Вабищевиц П.Н. Вычислительная теплопередача. М.: Едиториал УРСС, 2003. Samarskii A.A., Vabishchevits P.N. Computational heat transfer. Moscow: Editorial URSS, 2003 (In Russ.).
17. Слепцов С.Д., Рубцов Н.А. Решение классической однофазной задачи Стефана в модифицированной постановке для полупрозрачных сред. Прикл. механика и техн. физика. 2013. Т. 54. No. 3. С. 106—113. Sleptsov S.D., Rubtsov N.A. Solving the classical singlephase Stefan problem in a modified formulation for semi-transparent media. Prikladnaya mekhanika i tekhnicheskaya fizika. 2013. Vol. 54. No. 3. P. 106—113 (In Russ.).
18. Marios M., Bertrand C., Desilets M., Coulombe M., Lacroix M. Comparison of two different numerical methods for predicting the formation of the side ledge in an aluminum electrolysis cell. Light Metals. 2009. P. 563—568.
19. Severo D., Gusberti V. A modeling approach to estimate bath and metal heat transfer coefficient. Light Metals. 2009. P. 557—562.
20. Poncsak S., Kiss L., Belley A., Guerard S., Bilodeau J.-F. Study of the structure and thermophysical properties of the side ledge in Hall-Heroult cells operating with modified bath composition. Light Metals. 2015. P. 655—660.
21. Ситников А.В., Ершов В.А., Сысоев И.А. Способы измерения рабочего пространства при производстве алюминия. В сб.: Научные тенденции: вопросы точных и технических наук: Cб. науч. тр. по материалам VII междунар. науч. конф. Самара, 2017. С. 43—47. Sitnikov A.V., Ershov V.A., Sysoev I.A. Ways of measure of the working space in the production of aluminum. In: Scientific trends: questions of exact and technical sciences: Nauchnye trudy VII mezhdunarodnoi nauchnoi konferentsii. Samara, 2017. P. 43—47 (In Russ.).
22. Ситников А.В., Ершов В.А., Сысоев И.А. Лабораторные испытания макета для измерения формы рабочего пространства. В сб.: International innovation research: Сб. ст. XII Междунар. науч.-практич. конф. Пенза: МЦНС «Наука и просвещение», 2018. С. 101—104. Sitnikov A.V., Ershov V.A., Sysoev I.A. Laboratory test of the layout for measure the shape of the working space. In: International innovative research: Sbornik statei XII mezhdunarodnoi nauchno-prakticheskoi konferentsii. Penza: MTsNS «Nauka i prosveshchenie», 2018. P. 101—104 (In Russ.).
23. Jianfei Z., Dupuis M., Feiya Y., Xiaobing Y., Jun H. Depth analysis and potentiality exploitation on energy-saving and consumption-reduction of aluminum reduction pot. Light metals. 2012. P. 601—606.
24. Solheim A., Thonstad J. Model experiments of heat transfer coefficients between bath and side ledge in aluminium cells. Metals. 1984. Vol. 36. P. 51—55.
Review
For citations:
Ivanova A.M., Arkhipov P.A., Rudenko A.V., Tkacheva O.Yu., Zaikov Yu.P. Formation of ledge in aluminum electrolyzer. Izvestiya. Non-Ferrous Metallurgy. 2019;(5):23-31. (In Russ.) https://doi.org/10.17073/0021-3438-2019-5-23-31