Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Kinetic evaluation of the possibility of aluminum and magnesium recovery from aqueous solutions of their salts as an alternative to electrolysis of melts

https://doi.org/10.17073/0021-3438-2019-5-14-22

Abstract

In the non-ferrous metal industry a unique position is given to electrolytic production as being one of the most energy-consuming and environmentally dangerous technologies. Thus, for example, obtaining aluminum by cryolite-alumina melt electrolysis is accompanied by the atmospheric emissions of fluorine-, sulphur-containing substances and hydrocarbons, and magnesium production – by the emission of chlorine and organochlorine compounds. By present time those suggestions in terms of aluminum and magnesium production are considered relevant that are aimed at improving the environmental situation in the vicinity of metallurgical plants. Despite the fact that existing aluminum and magnesium production technologies are under favorable conditions for development and can be really adopted at existing plants, there are ideas and suggestions appearing to create new technologies based on scientific advances in electrolytic light metal production. The authors used magnesium and aluminum as research objects. They considered interaction between metals and aqueous solutions of their salts – MgSO4, MgCl2, Al2(SO4)3, AlCl3 chlorides and sulfates. It is shown that such interactions always take place in a diffuse area that provide for using various design solutions when selecting the process instrumentation. Experimental data were used to determine the reaction order with respect to the solvent, speed and activation energy constants. The results prove the assumption that it is preferable to use chloride media facilitating the process course based on primary electrode reactions and excluding any auxiliary interactions. It is demonstrated that chloride solutions can serve as operating electrolytes and can carry the recovered metal ions. At the same time electrolytic saturation guarantees the impossibility of a reversible process – secondary metal melt which leads to reducing the main indicators of cryolite-alumina melt electrolysis.

About the Authors

N. V. Nemchinova
Irkutsk National Research Technical University (IrNRTU)
Russian Federation

Dr. Sc. (Tech.), prof., head of the Department of metallurgy of non-ferrous metals.

664074, Russia, Irkutsk, Lermontov str., 83



A. A. Yakovleva
Irkutsk National Research Technical University (IrNRTU)
Russian Federation

Dr. Sc. (Tech.), prof., Department of сhemistry and food technology n.a. prof. V.V. Tuturina.

664074, Russia, Irkutsk, Lermontov str., 83



References

1. Сизяков В.М., Власов А.А., Бажин В.Ю. Стратегические задачи металлургического комплекса России. Цвет. металлы. 2016. No. 1. С. 32—37. Sizyakov V.M., Vlasov A.A., Bazhin V.Yu. Strategy tasks of the Russian metallurgical complex. Tsvetnye metally. 2016. No. 1. P. 32—37 (In Russ.).

2. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in power consumption at UC RUSAL’s Smelters 2012—2014. Light Metals. 2015. Р. 757—762.

3. Arkhipov G.V., Pingin V.V., Shaydulin E.R., Mukhametchin R.Kh., Zaykov Yu.P., Tolmacheva O.Yu. Improving energy efficiency of RUSAL’s cells. In: Non-ferrous metals and minerals-2018: Book of papers of the X Intern. Congr. (Krasnoyarsk, 10—14 Sept. 2018). Krasnoyarsk, 2018. P. 363—364.

4. Радионов Е.Ю., Третьяков Я.А., Немчинова Н.В. Влия- ние положения анодной рамы на магнитогидро- динамические параметры электролизера С-8БМЭ. Технология металлов. 2018. No. 4. С. 31—39. Radionov E.Yu., Tret’yakov Ya.A., Nemchinova N.V. Influence of the position of the anode frame on the magnetohydrodynamic parameters of the electrolyzer S-8BME. Tekhnologiya metallov. 2018. No. 4. P. 31—39 (In Russ.).

5. Buzunov V., Mann V., Chichuk E., Frizorger V., Pinaev A., Nikitin E. The first results of the industrial application of the EcoSoderberg technology at the Krasnoyarsk Aluminium Smelter. Light Metals. 2013. Р. 573—576.

6. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S., Somov V. Recycling process technology for spent pot lining generated by aluminium cells. Light Metals. 2017. P. 571—578.

7. Vysotsky D.V., Shemet A.D., Grigoriev V.G., Tepikin S.V., Ignatev A.V., Zherdev A.S., Knizhnik A.V. Introduction of «dry» gas treatment centres designed by RUSAL in the framework of import substitution of foreign technologies. In: Non-ferrous metals and minerals-2018: Book of papers of the X Intern. Congr. (Krasnoyarsk, 10—14 Sept. 2018). Krasnoyarsk, 2018. P. 517—521.

8. Patrin R.K., Bazhin V.Y. Spent linings from aluminum cells as a raw material for the metallurgical, chemical, and construction industries. Metallurgist. 2014. Vol. 58. Iss.7—8. Р. 625—629.

9. Галевский Г.В., Кулагин Н.М., Минцис М.Я. Экология и утилизация отходов в производстве алюминия: Учеб. пос. М.: Флинта, 2005. Galevskii G.V., Kulagin N.M., Mintsis M.Ya. Ecology and recycling of waste in the production of aluminum. Moscow: Flinta, 2005 (In Russ.).

10. Choi M.S., Lee C.K., Lee G.G., Cho S.K., Jung J.Y. Technology of molten salt electrolysis of magnesium chloride. Mater. Sci. Forum. 2010. Vol. 654—656. P. 799—802.

11. Gaertner H., Ratvik A., Aarhaug T. Particulate emissions from electrolysis cells. Light Metals. 2012. P. 345—351.

12. Grjotheim K., Kvande H. Introduction to aluminium electrolysis. Dusseldorf: Aluminium Verlag, 1993.

13. Седых В.И., Баранов А.Н., Никаноров А.В., Ершов П.Р. Пути сокращения выбросов фторидов в алюминиевом производстве. Изв. вузов. Цвет. металлургия. 2005. No. 2. С. 26—28. Sedykh V.I., Baranov A.N., Nikanorov A.V., Ershov P.R. Ways to reduce fluoride emissions in aluminum production. Izv. vuzov. Tsvet. metallurgiya. 2005. No. 2. Р. 26—28 (In Russ.).

14. Лебедев В.А., Седых В.И. Металлургия магния: Учеб. пос. Екатеринбург: УГТУ—УПИ, 2010. Lebedev V.A., Sedykh V.I. Magnesium metallurgy. Yekaterinburg: UGTU—UPI, 2010 (In Russ.).

15. Щеголев В.И., Лебедев О.А. Электролитическое получение магния. М.: Руда и металлы, 2002. Shchegolev V.I., Lebedev O.A. Electrolytic receiving magnesium. Moscow: Ruda i metally, 2002 (In Russ.).

16. Новый справочник химика и технолога. Электродные процессы. Химическая кинетика и диффузия. Коллоидная химия. Под. ред. С.А. Симановой. СПб.: Профессионал, 2004. New handbook chemist and technologist. Electrode processes. Chemical kinetics and diffusion. Colloid chemistry. Ed. S.A. Simanova. St. Petersburg: Professional, 2004 (In Russ.).

17. Минеев Г.Г., Минеева Т.С, Жучков И.А., Зелинская Е.В. Теория металлургических процессов: Учеб. для вузов. Иркутск: Изд-во ИрГТУ, 2010. Mineev G.G., Mineeva T.S., Zhuchkov I.A., Zelinskaya E.V. Theory of metallurgical processes. Irkutsk: IrGTU, 2010 (In Russ.).

18. Горшенин А.П., Иткин Г.Е., Чиркст Д.Э. Термодинамическое исследование электролиза раствора хлорида натрия. Изв. вузов. Химия и хим. технология. 2005. Т. 48. No. 3. С. 31—35. Gorshenin A.P., Itkin G.E., Chirkst D.E. Thermodynamic study of the electrolysis of sodium chloride solution. Izv. vuzov. Khimiya i khimicheskaya tekhnologiya. 2005. Vol. 48. No. 3. P. 31—35 (In Russ.).

19. Кублановский В.С., Городыский А.В., Белинский В.Н., Глущак Т.С. Концентрационные изменения в приэлектродных слоях в процессе электролиза. Киев: Наук. думка, 1978. Kublanovskii V.S., Gorodyskii A.V., Belinskii V.N., Glushchak T.S. Concentration changes in the near-electrode layers during electrolysis. Kiev: Naukova dumka, 1978 (In Russ.).

20. Свитцов А.А. Мембранные технологии в России. Водоснабжение и канализация. 2012. No. 11—12. С. 42—48 (In Russ.). Svitsov A.A. Membrane technology in Russia. Vodosnabzhenie i kanalizatsiya. 2012. No. 11—12. P. 42—48.

21. Бегунов А.И., Бегунова Л.А., Яковлева А.А., Шевелева Н.Н. Исследование физико-химических основ экологически чистого способа получения алюминия. Вестн. Иркутского гос. технич. ун-та. 2001. No. 11. С. 81—85. Begunov A.I., Begunova L.A., Yakovleva A.A., Sheveleva N.N. Study of the physicochemical basis of an environmentally friendly method of producing aluminum. Vestnik Irkutskogo gos. tekhnicheskogo un-ta. 2016. No. 11. P. 81—85 (In Russ.).

22. Naumov A.V. Modern state of the world market of gallium. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 3. P. 270—276. 23. Lu F., Xiao T., Lin J., Ning Z., Long Q., Huang L.X., Wang W., Xiao Q., Lan X., Chen H. Resources and extraction of gallium: A review. Hydrometallurgy. 2017. Vol. 174. P. 105—115.

23. Анциферов Е.А., Бегунова Л.А., Дударева Г.Н. Физико-химические методы анализа: Учеб. пос. Иркутск: Изд-во ИРНИТУ, 2017. Antsiferov E.A., Begunova L.A., Dudareva G.N. Physicochemical methods of analysis. Irkutsk: INRTU, 2017 (In Russ.).

24. Вуколов Э.А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTICA и EXCEL: Учеб. пос. М.: Форум, 2013. Vukolov E.A. Basics of statistical analysis. Workshop on statistical methods and operations research using STATISTICA and EXCEL packages. Moscow: Forum, 2013 (In Russ).

25. Немчинова Н.В., Яковлева А.А. Оптимизация кинетических исследований в металлургии. Вестн. Иркут- ского гос. технич. ун-та. 2016. Т. 20. No. 9. С. 119—129. Nemchinova N.V., Yakovleva A.A. Kinetic studies optimization in metallurgy. Vestnik Irkutskogo gos. tekhnicheskogo un-ta. 2016. Vol. 20. No. 9. P. 119—129 (In Russ.).

26. Романовский Б.В. Основы химической кинетики. М.: Экзамен, 2006. Romanovskii B.V. Basics of chemical kinetics. Moscow: Ekzamen, 2006 (In Russ.). 28. Дьяченко А.Н., Шагалов В.В. Химическая кинетика гетерогенных процессов: Учеб. пос. Томск: Изд-во Томского политехн. ун-та, 2014. Dyachenko A.N., Shagalov V.V. Chemical kinetics of heterogeneous processes. Tomsk: Tomsk Polytechnic University, 2014 (In Russ.).

27. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия: Учеб. пос. М.: Химия, КолосС, 2006. Damaskin B.B., Petri O.A., Tsirlina G.A. Electrochemistry. Moscow: Khimiya, KolosS, 2006 (In Russ.). 30. Бегунов А.И., Яковлева А.А., Яковлев C.А. Кинетические закономерности растворения магния в кислых средах. Изв. вузов. Цвет. металлургия. 2006. No. 2. С. 9—12. Begunov A.I., Yakovleva A.A., Yakovlev S.A. Kinetic patterns of magnesium dissolution in acidic environments. Izv. vuzov. Tsvet. metallurgiya. 2006. No. 2. P. 9—12 (In Russ.).

28. Schmitz Ch. Handbook of aluminium recycling. Vulkan- Verlag GmbH, 2006.

29. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: Справочник. М.: Дрофа, 2006. Lidin R.A., Andreeva L.L., Molochko V.A. Constants of inorganic substances. Moscow: Drofa, 2006 (In Russ.).

30. Фрумкин А.Н. Электродные процессы: Избр. тр. М.: Наука, 1987. Frumkin A.N. Electrode processes. Moscow: Nauka, 1987 (In Russ.).

31. Бегунов А.И. Технологии получения легких метал- лов. Иркутск: Изд-во ИрНИТУ, 2017. Begunov A.I. Technologies for the production of light metals. Irkutsk: INRTU, 2017 (In Russ.).


Review

For citations:


Nemchinova N.V., Yakovleva A.A. Kinetic evaluation of the possibility of aluminum and magnesium recovery from aqueous solutions of their salts as an alternative to electrolysis of melts. Izvestiya. Non-Ferrous Metallurgy. 2019;(5):14-22. (In Russ.) https://doi.org/10.17073/0021-3438-2019-5-14-22

Views: 702


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)