Improvement of the technological effects of flotation of lean fine disseminated scheelite ores
https://doi.org/10.17073/0021-3438-2019-4-5-4-13
Abstract
The paper describes the results of studying ways to improve the contrast of calcite and scheelite technological properties using water glass combined with aluminum, zinc, iron, magnesium sulphate salts, a mixture of water glass and calcium chloride, sodium carboxymethyl cellulose (CMC), combinations of sodium oleate with low-polar compounds (neonol, fatty isoalcohols), liquid phase and oleate ultrasound treatment. The monomineralic fraction of calcite floated by mechanical cell demonstrated that the minimum recovery of calcite is achieved by combining the Fe(II) salt and water glass (3(4) : 1). When f loating lean sheelite ore with a high carbonate modulus on domestic water, the combined use of water glass and CaCl2 reduces the floatability of calcium. Calcium chloride added to water glass on recycling water leads to a certain increase in the rough concentrate yield (13.8 to 14.1 %) with a significant decrease of WO3 recovery to the finished selection concentrate (72.7 to 53.3 %) and a deterioration in the concentrate quality. Replacement of water glass with CMC did not show satisfactory results. Ultrasonic treatment of pulp, liquid phase, collector leads to a certain increase in the calcite floatability, possibly due to the higher liquid phase temperature and increased proportion of the oleate ionic form. The use of neonols in the reagent scheme of flotation of scheelite-containing ore with a high carbonate modulus found no evidence of a decrease in the flotatability of calcite obtained when studying monomineralic calcite fractions unlike fatty isoalcohols that provided better concentrates in the selection cycle in comparison with a single oleate.
About the Authors
V. A. IgnatkinaRussian Federation
Dr. Sci. (Tech.), prof. of the Department of enrichment and processing of minerals and technogenic raw materials
119049, Russia, Moscow, Leninskii pr., 4.
E. D. Shepeta
Russian Federation
Cand. Sci. (Tech.), senior researcher, Laboratory of mineral processing related problems.
680000, Russia, Khabarovsk, Turgeneva str., 51
L. A. Samatova
Russian Federation
Cand. Sci. (Tech.), head of Laboratory of mineral processing related problems.
680000, Russia, Khabarovsk, Turgeneva str., 51
V. A. Bocharov
Russian Federation
Dr. Sci. (Tech.), professor.
References
1. Барский Л.А., Кононов О.В., Ратмирова Л.И. Селективная флотация кальцийсодержащих минералов. М.: Недра, 1979. Barsky L.A., Kononov O.V., Ratmirova L.I. Selective flotation of calcium-bearing minerals. Moscow: Nedra, 1979 (In Russ.).
2. Полькин С.И., Адамов Э.В. Обогащение руд цветных металлов. М.: Недра, 1983. Polkin S.I., Adamov E.V. Mineral proccesing of nonferrous metals. Moscow: Nedra, 1983 (In Russ.).
3. Бочаров В.А., Игнаткина В.А. Технология обогащения полезных ископаемых. Т. 1. М.: Руда и металлы, 2007. Bocharov V.A., Ignatkina V.A. Mineral processing technology. Vol. 1. Moscow: Ruda i metally, 2007 (In Russ.).
4. Шепета Е.Д., Саматова Л.А., Воронова О.В. Перспективные направления развития технологий обогащения вольфрамсодержащих руд и техногенных образований. Горн. журн. 2018. No. 10. C. 67—71. Shepeta E.D., Samatova L.A., Voronova O.V. Prospective trends in the development of mineral processing technologies for tungsten-containing ores and technogenic formations. Gornyi zhurnal. 2018. No. 10. P. 67—71 (In Russ.).
5. Bo F., Xianping L., Jinging W., Pengcheng W. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng. 2015. Vol. 80. P. 45—49.
6. Shi Q., Feng Q., Zhang G., Deng H. A novel method to improve depressants actions on calcite flotation. Miner. Eng. 2014. Vol. 55. P. 186—189.
7. Kupka N., Rudolph M. Froth flotation of scheelite. A review. Int. J. Mining Sci. Technol. 2018. Vol. 28. Iss. 3. P. 373—384. http://dx.doi.org/10.1016/j.ijmst.2017.12.001.
8. Рязанцева М.В., Бунин И.Ж., Копорулина Е.В. Использование импульсных энергетических воздействий для модифицирования структурно-функционального состояния поверхности и технологических свойств кальцийсодержащих минералов. Физ.-техн. пробл. разраб. полез. ископаемых. 2016. No. 6. С. 134—141. Ryazantseva M.V., Bunin I.Zh., Koporulina E.V. Impulse energy inputs to modify subsurface structure and functions and process properties of calcium-bearing minerals. J. Miner. Sci. 2016. Vol. 52. No. 6. P. 1168—1175. https://doi.org/10.1134/S106273911606170X.
9. Игнаткина В.А., Усиченко С.Д., Милович Ф.О. Влияние неионогенных оксигидрильных соединений и их смесей с олеатом на флотоактивности кальцита. Горн. инф.-анал. бюл. 2018. No. 5. С. 169—179. DOI: 10.25018/0236-1493-2018-10-0-169-179. Ignatkina V.A., Usichenko S.D., Milovich F.O. Effect of nonionic oxyhydryl compounds and their mixtures with oleate on flotation activity of calcite. Mining Inform. Anal. Bull. 2018. Vol. 5. P. 169—179. DOI: 10.25018/0236-1493-2018-10-0-169-179 (In Russ.).
10. Шепета Е.Д., Игнаткина В.А., Саматова Л.А. Повышение контрастности свойств кальцийсодержащих минералов при флотации шеелит-карбонатных руд. Обогащение руд. 2017. No. 3. C. 41—49. DOI: 10.17580/or.2017.03.07. Shepeta E.D., Ignatkina V.A., Samatova L.A. Calcium minerals properties contrast increase in scheelite-carbonate ores flotation. Obogashchenie rud. 2017. No. 3. P. 41—49. DOI: 10.17580/or.2017.03.07 (In Russ.).
11. Liu Ch., Feng Q., Zhang G., Chen W., Chen Y. Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int. J. Miner. Process. 2016. Vol. 157. P. 210—215.
12. Mohamed A.M. Abdall, Huiqing Peng, Hussein A. Younus, Di Wu, Leena Abusin, Hui Shao. Effect of synthesized mustard soap on the scheelite surface during flotation. Colloids Surf. A. 2018. Vol. 548. P. 108—116. https://doi.org/10.1016/j.colsurfa.2018.01.055.
13. Ignatkina V.A. , Shepeta E.D., Samatova L.A., Milovich F.O. Flotation of а sheelite-carbonate ore with wide range of carbonate module. In: Proc. 29th Intern. Mineral Processing Congress IMPC 2018 (Moscow, 17—21 Sept. 2018). Canadian Institute of Mining, Metallurgy and Petroleum, 2019. P. 1014—1025.
14. Foucaud Y., Filippova I.V., Filippov L.O. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technol. 2019. Vol. 352. P. 501—512. DOI: 10.1016/j.powtec.2019.04.071.
15. Deng L., Zhao G., Zhong H., Wang S., Liu G. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem. 2016. Vol. 33. P. 131—141. DOI: 10.1016/j.jiec.2015.09.027.
16. Gao Z., Bai D., Sun W., Cao X., Hu Y. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng. 2015. Vol. 72. P. 23—26. DOI: 0.1016/j.mineng.2014.12.025.
17. Filippov L.O., Filippova I.V., Lafhaj Z., Fornasiero D. The role of a fatty alcohol in improving calcium minerals flotation with oleate. Colloids Surf. A. 2019. Vol. 560. P. 410—417. DOI: 10.1016/j.colsurfa.2018.10.022.
18. Hanumantha Rao K., Forssberg K.S.E. Mixed collector systems in flotation. Int. J. Miner. Process. 1997. Vol. 51. Iss. 1—4. P. 67—79.
19. Filippov L.O., Shokhin V.N., Yenbaeva L.I., Ignatkina V.A. Improvement of engineering data for flotation of scheelite using combination of sodium oleate and Exol-B. Tsvetnye Metally. 1993. No. 1. P. 60—64.
20. Gao Y., Gao Z., Sun W., Yin Z., Wang J., Hu Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2018. Vol. 512. P. 39—46. DOI: 10.1016/j.jcis.2017.10.045.
21. Filippov L.O., Foucaud Y., Filippova I.V., Badawi M. New reagent formulations for selective flotation of scheelite from a skarn ore with complex calcium minerals gangue Miner. Eng. 2018. Vol. 123. P. 85—94. DOI: 10.1016/j.mineng.2018.05.001.
22. Atademir M.R., Kitchener J.A., Shergold H.L. The surface chemistry and flotation of scheelite. II. Flotation «collectors». Int. J. Miner. Process. 1981. Vol. 8. Iss. 1. P. 9—16. DOI: 10.1016/0301-7516(81)90003-X.
23. Chun B.J., Lee S.G., Choi J.I., Jang S.S. Adsorption of carboxylate on calcium carbonate (1014) surface: Molecular simulation approach. Colloids Surf. A. 2015. Vol. 474. P. 9—17. DOI: 10.1016/j.colsurfa.2015.03.003.
24. Cooper T.G., De Leeuw N.H. A computer modeling study of the competitive adsorption of water and organic surfactants at surfaces of the mineral scheelite. Langmuir. 2004. Vol. 20. Iss. 10. P. 3984—3994. DOI: 10.1021/la049796w.
25. Deng L., Zhao G., Zhong H., Wang S., Liu G. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem. 2016. Vol. 33. P. 131—141. DOI: 10.1016/j.jiec.2015.09.027.
26. Gao Z.-Y., Sun W., Hu Y.-H., Liu X.-W. Surface energies and appearances of commonly exposed surfaces of scheelite crystal. Trans. Nonferr. Met. Soc. China (Engl. Ed.). 2013. Vol. 23. Iss. 7. P. 2147—2152. DOI: 10.1016/S1003-6326(13)62710-7.
27. Gao Z., Sun W., Hu Y. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng. 2015. Vol. 79. No. 4664. P. 54—61. DOI: 10.1016/j.mineng.2015.05.011.
28. Marinakis K.I., Kelsall G.H. The surface chemical properties of scheelite (CaWO4). II. Collector adsorption and recovery of fine scheelite particles at the iso-octane/water interface. Colloids Surf. 1987. Vol. 26 . P. 243—255. DOI: 10.1016/0166-6622(87)80119-1.
Review
For citations:
Ignatkina V.A., Shepeta E.D., Samatova L.A., Bocharov V.A. Improvement of the technological effects of flotation of lean fine disseminated scheelite ores. Izvestiya. Non-Ferrous Metallurgy. 2019;(5):4-13. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-5-4-13