УДК 541.134 DOI 10.17073/0021-3438-2015-1s-30-34

АНОДНЫЕ ПРОЦЕССЫ ПРИ ИЗВЛЕЧЕНИИ ТЕЛЛУРА ИЗ ОКСИГАЛОГЕНИДНЫХ РАСПЛАВОВ

© 2015 г. В.А. Лебедев, А.В. Бабин, А.Ю. Николаев, А.В. Лукинских, Ф.Ф. Мухмадеев, В.А. Шунин, А.Б. Лебедь

Уральский федеральный университет (УрФУ) им. первого Президента России Б.Н. Ельцина, г. Екатеринбург

ООО «УГМК-Холдинг», г. Верхняя Пышма

ОАО «Уралэлектромедь», г. Верхняя Пышма

Изучена кинетика процессов на графитовом аноде в оксигалогенидных расплавах на основе эвтектики CsCl–KCl–NaCl с добавками TeO₂ и NaF при температуре 600 °C. Исследованы зависимости предельных токов перезаряда ионов теллура и остаточных токов разряда кислородсодержащих ионов от содержания TeO₂ и NaF. Превышение этих токов приводит к выделению хлора в оксихлоридных расплавах и фреонов в оксихлоридно-фторидных расплавах. Предложен механизм растворения TeO₂ в хлоридных и хлоридно-фторидных расплавах с формированием и последующей диссоциацией оксихлорида теллура с образованием O^{2-} , TeCl₆²⁻, [TeO₂Cl]⁻. Их присутствие в электролите подтверждено методом инфракрасной спектроскопии и объясняет высокие скорости разряда на аноде кислородсодержащих ионов.

Ключевые слова: эвтектика; CsCl–KCl–NaCl, оксид теллура, фторид натрия, графитовый анод, кинетика, механизм процессов.

There was investigated kinetic of processes on graphite anode in oxidative melt on the base of eutectic CsCl–KCl–NaCl with additives TeO₂ and NaF at temperature 600 °C. There were researched relationships between limiting current of ions tellurium's overcharge and limiting current of discharge of oxygen-containing ions and content of TeO₂ and NaF. Excess of these currents leads to chlorine evolution in oxychloride melts and freons in oxychloride-fluoride melts. There was offered mechanism of TeO₂ dissolution in chloride and chloride-fluoride melts with generation and subsequent dissociation of tellurium oxychloride with forming of O^{2-} , TeCl₆²⁻, and [TeO₂Cl]⁻. Its availability in electrolyte was confirmed by method of infrared spectroscopy, and explains high rate of discharge of oxygenated ions at the anode.

Keywords: eutectic, CsCl-KCl-NaCl, tellurium oxide, sodium fluoride, graphite anode, kinetics, process mechanism.

Введение

Теллур относится к редким металлам, его содержание в земной коре составляет $1\cdot 10^{-6}$ мас.%. Между тем этот металл и его соединения играют важную роль в современной технике. Так, теллурид кадмия является представителем класса полупроводниковых материалов A_2B_6 и в основном используется в производстве детекторов ионизирующих излучений, инфракрасной техники, солнечных элементов. Ежегодный прирост рынка ИК-детекторов составляет 15 %, солнечной энергетики — 39 %. Промышленно развитые страны планируют увеличение мощности солнечных электростанций в общемировом балансе до 25—30 % к 2030—2040 гг. [1]. С ростом потребности повышаются и цены на теллур — от 30 долл. США/кг

Лебедев В.А. – докт. хим. наук, проф., зав. кафедрой металлургии легких металлов УрФУ (620002, г. Екатеринбург, ул. Мира, 19). Тел. (343) 375-46-11. E-mail: v.a.lebedev@urfu.ru. **Бабин А.В.** – канд. техн. наук, доцент этой кафедры. E-mail: babinav@mail.ru. **Николаев А.Ю.** – ст. препод. этой кафедры. E-mail: nau_81@mail.ru. **Лукинских А.В.** – канд. хим. наук, доцент этой кафедры. E-mail: lwsustu@gmail.com. **Мухмадеев Ф.Ф.** – инженер-технолог лаборатории драгоценных металлов Исследовательского центра ОАО «Уралэлектромедь» (624091, Свердловская обл., г. Верхняя Пыима, ул. Ленина, 1). E-mail: mff@elem.ru. **Шунин В.А.** – зам. начальника этого Центра, начальник той же лаборатории. E-mail: V.Shunin@elem.ru. **Лебедь А.Б.** – гл. специалист отдела металлургии управления стратегического планирования ООО «УГМК-Холдине» (624091, Свердловская обл., г. Верхняя Пыима, ул. Ленина, 1). E-mail: a.lebed@UGMK.com. в 2003 г. до 160 долл.США/кг в 2005 г. В конце 2010 г. его цена составила 140 долл.США/кг [1].

Для использования теллура в указанных областях требуется металл высокой чистоты (>99,999 мас.%), который получают химической очисткой растворов содового выщелачивания теллура из шламов рафинирования меди, электроосаждением металла из щелочных электролитов с последующей его глубокой очисткой ректификацией. Электроосаждение ведут при температуре 40—50 °С и плотности тока 60 A/m^2 [2]. Более высокие температуры электролиза и рафинирования теллура в солевых расплавах дают возможность более интенсивного осуществления процессов при более высокой избирательности.

Так, электрорафинирование свинца в хлоридных расплавах при $T = 803 \div 823$ К [3] позволило существенно (почти на два порядка) повысить интенсивность процесса при высокой его избирательности. Получена опытная партия катодного свинца, соответствующая марке С1 по ГОСТ 3778-98 с содержанием Sb, Sn, Cu, Zn, Fe, As, Ag менее 0,001 %.

Известен способ получения теллура электролизом расплава 3LiCl—2KCl, содержащего до 50 % TeO_2 [4]. Процесс ведут при температуре 700 °C с катодной плотностью тока 1 А/см², получая теллур марки Т1. Недостатками этого метода являются высокая гигроскопичность литиевой эвтектики и малая комплексующая способность иона Li⁺. В работе [4] отсутствуют сведения о механизме и кинетике электродных процессов.

Выбор электролита для электролиза теллура мы также остановили на оксигалогенидных расплавах. Однако вместо гигроскопичной эвтектики 2KCl— 3LiCl его основу составляет эвтектическая смесь негигроскопичных солей (мол.%): CsCl(0,455)— KCl(0,245)—NaCl(0,300) с температурой плавления 480 °C.

Выполненные расчеты по методике [5] показали, что наличие в рассматриваемой эвтектической смеси CsCl—KCl—NaCl катионов Cs⁺ и K⁺, обладающих малыми ионными моментами, приводит к образованию прочных комплексных ионов TeCl₆^{2–}. В результате активность TeCl₄ снижается в 10^8 — 10^9 раз, испарение легколетучего TiCl₄ ($t_{кип} = 224$ °C) из такого солевого расплава практически исключается, разряд ионов Te⁴⁺ и ионизация теллура могут осуществляться по одностадийной 4-электронной схеме.

Сведения о поведении теллура в солевых расплавах ограниченны. В работе [6] в расплаве KCl, AlCl₃, ZnCl₂ спектрофотометрическим методом наблюдали четыре различных частицы теллура предположительно состава Te_2^{2+} , Te_4^{2+} , Te_6^{2+} , Te_8^{2+} , но это не было доказано. Сольватированные частицы Te²⁺ были идентифицированы авторами [7] в том же расплаве в реакции смешения разбавленных растворов TeCl₄ и элементарного теллура. Наблюдаемая полоса частот абсорбции двухвалентного теллура (возможно, $TeCl_6^{2-}$) интерпретирована как *p*-*p*-переходы с $5p^2$ конфигурации. Вольтамперометрическим методом [8] установлено, что осаждению теллура из рассматриваемых расплавов, содержащих 0,025М TeCl₄, на стеклоуглеродном катоде при T = 423 K предшествует волна восстановления ионов Te⁴⁺ до двухвалентного состояния. Ранее [9] сообщалось, что растворимые формы теллура в солевых расплавах представлены Te(IV), Te(II) и Te $_4^{2+}$, при этом трудно идентифицировать окислительно-восстановительный потенциал, отвечающий соответствующей окислительно-восстановительной реакции.

В настоящей работе изучены кинетика и механизм анодных процессов на графитовом аноде в выбранном нами расплаве.

Экспериментальная часть

Легкоплавкие солевые смеси эвтектического состава готовили из индивидуальных солей марки XЧ, высушенных при температуре 110 °С в течение 2 ч. Фторид калия предварительно обезвоживали при $t = 50 \div 140$ °C, $\tau = 25$ ч, а затем плавили при t = 900 °C. Использовали теллур марки T1 (99,3 % Te).

Экспериментальная ячейка для изучения электродных процессов и параметров электролиза в оксихлоридном и оксихлоридно-фторидном расплавах изображена на рис. 1.

Концентрацию ионов теллура в расплаве меняли добавкой через загрузочную кварцевую трубку 4 таблеток оксида теллура, изготовленных прессованием увлажненного порошка TeO_2 с последующей сушкой при t = 110 °C до достижения ими постоянной массы. Мольное отношение ионов фтора к ионам теллура в электролите задавали загрузкой предварительно проплавленного фторида натрия. В качестве контейнера для расплава использовали керамический тигель 6 из оксида магния.

Токоподвод к теллуру изготавливали из графитового стержня, изолированного от электролита керамической трубкой из оксида алюминия. Рабочая площадь жидкометаллического теллурового катода составляла 9,1 см².

Рис. 1. Устройство электролитической ячейки для изучения электродных процессов

I – хромель-алюмелевая термопара в чехле из оксида бериллия;
газовый распределительный кран; З – подвеска из железной проволоки;
4 – кварцевая загрузочная трубка;
5 – кварцевая ячейка;
6 – керамический тигель;
7 – электролит;
8 – графитовый анод;
9 – электрод сравнения;
10 – теллур;
11 – буферная емкость;
12 – емкость с поглотительным раствором

Графитовый анод 8 имел небольшую конусность для облегчения удаления с его подошвы анодных газов. Рабочая поверхность анода, в зависимости от глубины погружения в электролит, изменялась в пределах 2,0-4,1 см².

Поляризацию измеряли относительно свинцового электрода сравнения 9, мас.%: Pb|68,1CsCl— 16,3KCl—15,6NaCl + 5PbCl₂||, находившегося в алундовой трубке с асбестовой диафрагмой. В качестве токоподвода к жидкому свинцу служила проволока из более электроположительного металла молибдена.

Рассчитанная по методике [5] и данным [10] температурная зависимость потенциала свинцового электрода сравнения относительно хлорного электрода сравнения составила

 $\Delta E_{\rm PbCl_2/Pb} = -1,787 + 0,425 \cdot 10^{-3} T.$

Температуру расплава контролировали отградуированной хромель-алюмелевой термопарой *1*.

Для программного управления измерением и регистрацией вольт-амперных кривых, кривых отключения и включения с использованием системной платформы автоматизации на базе модулей PXI от фирмы «National Instruments» (США) был разработан программный код создания виртуальных приборов: генератора импульсов специальных форм (для управления поляризующим током и синхронизации с регистрирующими приборами), полярографа и регистратора (для измерения и записи задаваемых значений тока, напряжений отклика с IR-компенсацией и без нее в реальном масштабе времени).

Опыты проводили в герметичной кварцевой ячейке 5. В начале эксперимента ячейку в течение 40 мин нагревали до 400 °С под вакуумом, затем через газовый распределительный кран 2 запускали в нее предварительно осушенный и очищенный пропусканием через нагретую до 800 °С губку титана аргон и доводили температуру до необходимой величины. Анодные газы отводили с помощью газового крана 2 через буферную емкость 11 в нейтрализатор 12 с поглотительным водным раствором (100—150 г/л NaOH). Очищенные от теллура, селена, мышьяка, хлора и диоксида углерода отходящие газы направлялись в вытяжку.

Результаты и их обсуждение

Пример определения по поляризационным кривым предельных токов перезаряда ионов Te^{2+}/Te^{4+} (i_{nep}), остаточных (i_{oct}) и разряда кислородсодержащих ионов (i_{O_2}) показан на рис. 2.

На типичной анодной поляризационной кривой графитового анода в оксигалогенидном расплаве можно выделить несколько характерных участков.

Первый из них, при низких плотностях тока (до 0,01 A/см²), идущий практически без поляризации, мы связываем с установившимся самопроизвольным процессом перезаряда ионов Te²⁺, Te⁴⁺ (i_{nep}), выравнивающего потенциалы электродов.

Рис. 2. Пример обработки анодных поляризационных кривых

Номер опыта	Концентрация TeO ₂ в электролите в пересчете на Te, мас.%	Мольное отношение F/Te	<i>Т</i> , К	$i_{\rm nep,} A/cm^2$	$i_{\rm oct,} A/cm^2$	i _{O2} , А/см ²
1	0	_	872	0,004	0,004	0,15
2	2,0	_	873	0,006	0,062	0,79
3	4,2	_	880	0,010	0,126	1,00
4	8,0	_	888	0,020	0,204	1,20
5	8,0	1,0	888	0,021	0,251	1,20
6	8,0	2,1	886	0,024	0,314	1,50
7	0	_	874	0,008	0,013	0,04
8	1,9	4,7	885	0,016	0,158	0,63
9	3,9	4,1	880	0,020	0,158	1,00
10	7,6	4,7	883	0,038	0,316	1,58

Условия и результаты экспериментов

Остаточные токи (i_{oct}), предшествующие разряду на аноде кислородсодержащих ионов, обусловлены окислением ионов Te²⁺ до Te⁴⁺ и растворением высадившегося на аноде теллура в результате диспропорционирования ионов Te²⁺ по реакции

$$2Te^{2+} = Te^{4+} + Te.$$
 (1)

При $i_a = 0,12$ А/см² достигается предельный ток этого процесса, а при $i_a = 1,0$ А/см² — предельный ток разряда кислородсодержащих ионов. При более высокой плотности тока потенциалы анода в хлоридно-оксидном расплаве свидетельствуют о выделении на нем газообразного хлора.

Условия проведения опытов и результаты изучения кинетики протекания процессов на графитовом аноде при электролитическом извлечении теллура из оксихлоридного и оксихлоридно-фторидного расплавов показаны на рис. 3 и представлены в таблице.

Фоновые поляризационные кривые в хлоридном (опыт *I*) и хлоридно-фторидном (опыт 7) расплавах связаны с процессами коррозии металлического теллура в электролите и наличием в нем продуктов гидролиза. В хлоридном электролите меньше токи перезаряда и остаточные, но больше токи разряда кислородсодержащих ионов, что связано с более отрицательными потенциалами теллура и меньшей гидролизуемостью хлоридно-фторидных расплавов.

С повышением содержания оксида теллура в хлоридном электролите (опыты 2—4) происходит сближение потенциалов графитового и теллурового электродов, закономерно возрастают токи i_{nep} , i_{oct} и i_{O_2} . При этом потенциалы разряда кислородсодержащих ионов закономерно смещаются сторону электроотрицательных значений, свидетельствуя о существовании в расплавах оксихлоридных ионов теллура. Выполненный ИК-спектрометрический анализ застывшего оксихлоридного электролита выявил наличие четкого максимума при v == 489,01 см⁻¹, отвечающего валентным колебаниям связей в комплексном анионе [TeO₂Cl]⁻. Это позволило предложить механизм протекания процессов, происходящих в электролите и на графитовом аноде в исследуемых расплавах.

При введении таблетки TeO₂ в хлоридный расплав первоначально на поверхности контакта оксида с ионами хлора образуется достаточно прочный ($t_{пл} = 580$ °C) оксихлорид теллура:

$$6\text{TeO}_2 + 2\text{Cl}^- = \text{Te}_6\text{O}_{11}\text{Cl}_2 + \text{O}^{2-}.$$
 (2)

Расплавившись в среде хлоридов щелочных металлов, оксихлорид теллура частично или полностью диссоциирует на ионы:

$$Te_6O_{11}Cl_2 + 3Cl^- = 5[TeO_2Cl]^- + O^{2-} + Te^{4+}.$$
 (3)

Связывание в цезиевой эктектике ионов Te^{4+} в прочные комплексные анионы $[\text{TeCl}_6]^{2-}$ способствует полноте протекания реакции (3).

Контакт 4-зарядных ионов с металлическим теллуром приводит к образованию ионов двухвалентного теллура и процессам перезаряда ионов у различных электродов, диспропорционированию ионов Te^{2+} .

На графитовом аноде разряжаются как ионы O^{2-} , образующиеся по реакциям (2) и (3):

$$2O^{2-} - 4e + C = CO_2, \tag{4}$$

так и 5 анионов [TeO₂Cl]⁻, образовавшихся по реакции (3):

$$5[\text{TeO}_2\text{Cl}]^- - 5e + 5\text{C} + 25\text{Cl}^- =$$

= 5TeCl₆²⁻ + 5CO₂. (5)

Это обеспечивает высокие скорости разряда на графитовом аноде кислородсодержащих анионов в оксихлоридном расплаве.

Рис. 3. Анодная поляризация графитового электрода относительно хлорного электрода сравнения в расплаве CsCl—KCl—NaCl—TeO₂—NaF в условиях опытов *1*—*10* (см. таблицу) Оцифровка значков соответствует нумерации опытов

Величины рассматриваемых предельных токов изменяются в процессе электролиза из-за изменения составов поверхностных слоев электролита и электродов.

Введение в оксихлоридный расплав ионов фтора приводит к дальнейшему сближению потенциалов анода и катода, значительному повышению токов перезаряда и остаточных, небольшому снижению токов разряда кислородсодержащих ионов. Объясняется это тем, что, поскольку отношение $m = F^-/Te^{4+}$ в расплавах не превышало 6, все ионы фтора связывались теллуром в более прочные, чем хлоридные, хлоридно-фторидные комплексы $[TeF_mCl_{6-m}]^{2-}$ и не оказывали влияние на состав оксихлоридных комплексов, разряжающихся на графитовом аноде. ИК-спектры оксихлоридно-фторидно-фторидного электролита подтвердили наличие в нем ионов $[TeO_2Cl]^-$ и отсутствие $[TeO_2F]^-$.

Заключение

Изучены последовательность и кинетика электродных процессов, происходящих на графитовом аноде в теллурсодержащих оксигалогенидных расплавах. Предложен механизм наблюдаемых в электролите и на графитовом аноде процессов.

Литература

- 1. *Наумов А.В., Наумова М.А.* // Цв. металлы. 2010. № 10. С. 6.
- Сошникова Л.А., Езерницкая М.Е. // Там же. 1962. № 7. С. 60.
- Ашихин В.В. Рафинирование чернового свинца в хлоридных расплавах: Автореф. дис. ... канд. техн. наук. Екатеринбург: УГТУ—УПИ, 2009.
- А.с. 165544 (СССР). Способ электролитического получения теллура / А.И. Аликперов, Г.Х. Эфендиев, П.Г. Рустамов. 1963.
- 5. Лебедев В.А. // Докл. АН 1993. Т. 330, № 5. С. 586.
- 6. Bierrum N.J. // Inorg. Chem. 1970. Vol. 9. P. 1965.
- Niels B., Bjerrum J. // Ibid. 1971. Vol. 10, № 11. P. 2578.
- Hirofumi Ebe, Mikato Ueda, Toshiaki Ohtsuka // Electrochim. Acta. 2007. Vol. 53. P. 100.
- Robinson J., Osteryong R.A. // J. Electrochem. Soc. 1978. Vol. 125. P. 1784.
- 10. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.