
Izvestiya. Non-Ferrous Metallurgy  •  2025  •  Vol. 31  •  No. 4 •  P. 37–49

37

Pesin A.M., Razinkin A.V., Zamaraev V.A., Pustovoitov D.O. Finite element modeling and analysis of the technological feasibility...

ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ / PRESSURE TREATMENT OF METALS

УДК 621.771.8

https://doi.org/10.17073/0021-3438-2025-4-37-49

Научная статья

Research article

©  2025 г.  А.М. Песин, А.В. Разинкин, В.А. Замараев, Д.О. Пустовойтов

Конечно-элементное моделирование 
и анализ технологической возможности применения 
новой схемы плакирования слитков 
из алюминий-литиевого сплава 1441

А.М. Песин1, А.В. Разинкин2, В.А. Замараев2, Д.О. Пустовойтов1

1 Магнитогорский государственный технический университет им. Г.И. Носова
Россия, 455000, Челябинская обл., г. Магнитогорск, пр-т Ленина, 38

2 ПАО «Каменск-Уральский металлургический завод»
Россия, 623405, Свердловская обл., г. Каменск-Уральский, ул. Заводская, 5

  Денис Олегович Пустовойтов (pustovoitov_den@mail.ru)

Аннотация: С использованием программы «QForm» проведен конечно-элементный анализ технологической возможности при-

менения новой схемы плакирования слитков толщиной 360 мм из алюминий-литиевого сплава 1441 в условиях ПАО «КУМЗ». 

Взамен традиционной схемы плакирования, предусматривающей приварку планшетов к слитку за 4 прохода с абсолютными 

обжатиями по 6 мм, предложено укладывать планшеты в специальные углубления, предварительно выполненные фрезерова-

нием на верхней и нижней поверхностях слитка, а приварку осуществлять за 1 проход с абсолютным обжатием 24 мм. Показано, 

что новая схема плакирования позволяет предотвратить выдавливание планшетов с поверхности слитка при высоких абсолют-

ных обжатиях. Это дает возможность использовать более тонкие планшеты (толщиной 10 мм) взамен традиционных (15 мм). 

Установлено, что по новой схеме плакирования существенно сокращается общее количество проходов и междеформационных 

пауз при черновой прокатке и за счет этого улучшается тепловое состояние раската перед чистовой прокаткой. При сокращении 

3 проходов и 3 междеформационных пауз среднее повышение температуры составляет 23 °С. Исследовано деформированное 

состояние основного металла (сплав 1441) и плакирующего слоя (сплав АЦпл). Показано, что средняя накопленная деформация 

в слитке (математическое ожидание) после прокатки по новой схеме в 2 раза выше в сравнении с традиционной схемой. При этом 

характер деформации плакирующего слоя при прокатке по новой схеме более равномерный. Результаты могут быть использо-

ваны для совершенствования и оптимизации технологических режимов горячей прокатки плакированных листов и полос из 

алюминий-литиевого сплава 1441 в условиях ПАО «КУМЗ».
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Введение

Алюминий-литиевые сплавы, в сравнении с 

традиционными сплавами типа Д16, обладают 

уникальными свойствами — пониженной плотно-

стью, повышенной жесткостью, высокими проч-

ностными характеристиками и сопротивлением 

усталостным нагрузкам, а также хорошей корро-

зионной стойкостью и удовлетворительной свари-

ваемостью [1—7]. Полный технологический цикл 

изготовления листов и полос из алюминий-литие-

вых сплавов освоен на Каменск-Уральском метал-

лургическом заводе (ПАО «КУМЗ»), являющемся 

единственным производителем и поставщиком та-

ких сплавов в России. Алюминий-литиевый сплав 

1441 системы Al—Cu—Mg—Li относится к сплавам 

второго поколения, его производство ведется в 

ПАО «КУМЗ» с 1990 г. [8] Этот конструкционный 
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сплав находит широкое применение в авиастрое-

нии и космической технике [9—13].

Плакирование — это самостоятельная техноло-

гическая операция горячей прокатки, в ходе кото-

рой обеспечивается покрытие слитков из алюми-

ниевых сплавов тонким слоем чистого алюминия 

( 99,3 %) или сплава АЦпл с целью обеспечения 

дополнительной коррозионной защиты [14; 15] 

производимых листов и полос. Плакирование при 

производстве алюминий-литиевых сплавов обе-

спечивает также значительное повышение выхода 

годного, поскольку способствует улучшению ка-

чества кромки и поверхности листов и полос [16].

Различают три вида плакировок [17]:

— технологическая плакировка Б, предназна-

ченная для создания более благоприятных усло-
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вий деформирования при прокатке листов из ма-

лопластичных сплавов (толщина плакирующего 

слоя — не более 1,5 % от толщины листа);

— нормальная плакировка А для коррозионной 

защиты листов (толщина плакирующего слоя — не 

менее 2 % для листов толщиной более 1,9 мм, и не 

менее 4 % — для листов толщиной менее 1,9 мм);

— утолщенная плакировка У для улучшенной 

коррозионной защиты (толщина плакирующего 

слоя — не менее 4 % для листов толщиной более 

1,9 мм, и не менее 8 % — для листов толщиной ме-

нее 1,9 мм).

Для производства плакированных листов и 

полос из алюминий-литиевого сплава 1441 ис-

пользуют плоские слитки сечениями 225× 950 мм, 

275×1100 мм, 300 ×1100 мм, 390 ×1360 мм [8]. Перед 

прокаткой проводится специальный комплекс 

мероприятий по подготовке как слитка (заготов-

ка основного металла), так и планшета (заготовка 

плакирующего металла). С целью удаления дефек-

тов литья и обеспечения качественной двусторон-

ней (сверху и снизу) приварки планшетов слитки 

фрезеруют по широким граням на величину от 

5 до 15 мм с каждой стороны [17]. Перед уклад-

кой соприкасающиеся поверхности планшетов и 

слитка обезжиривают. Толщина планшета (hпл) 

рассчитывается, исходя из толщины слитка (Hсл) и 

требуемой толщины плакирующего слоя [17]:

hпл = Hслδ/100а + 2δ,  (1)

где а = 0,8 — коэффициент, учитывающий разницу 

в деформации слитка и планшета в первых прохо-

дах; δ — верхний предел толщины плакирующего 

слоя по нормативной документации.

Перед горячей прокаткой слитки из алюми-

ний-литиевого сплава 1441 с уложенными план-

шетами нагревают до температуры не выше 460 °С. 

Приварка планшетов осуществляется при горячей 

прокатке в первых 4 проходах с абсолютным об-

жатием за проход не более 6 мм в цилиндрических 

валках без подачи смазывающе-охлаждающей 

жидкости (СОЖ). Подача СОЖ в первых 4 прохо-

дах не используется для исключения попадания 

СОЖ под планшеты и образования дефекта типа 

«подпланшетный пузырь». В качестве СОЖ при-

меняют водно-масляный раствор с содержанием 

прокатного масла от 1 до 2,5 %. При дальнейших 

черновых и чистовых проходах горячая прокатка 

ведется с подачей СОЖ.

Согласно работе [4], рекомендованный тем-

пературный интервал горячей прокатки алюми-

ний-литиевого сплава 1441 составляет t = 460÷
÷390 °С. Однако в условиях действующего произ-

водства фактические температурные интервалы 

горячей прокатки составляют: 460—340 °С — при 

черновой прокатке, 340—300 °С и даже ниже — 

при чистовой прокатке. Снижение фактических 

температур горячей прокатки обусловлено тепло-

потерями в ходе большого количества черновых 

проходов (до 19) и, соответственно, междеформа-

ционных пауз, во время которых происходит ох-

лаждение раската на воздухе. Возможности интен-

сификации режима обжатий на черновой стадии 

ограничены операцией приварки планшетов, где 

абсолютные обжатия за проход не должны превы-

шать 6 мм (это соответствует относительному об-

жатию 1,5 %), иначе происходит «выдавливание» 

материала планшета с поверхности слитка.

В технической литературе имеется значитель-

ное количество работ [18—27], посвященных изу-

чению и совершенствованию процесса плакирова-

ния листов из алюминиевых сплавов при горячей 

прокатке. Однако вопрос повышения эффектив-

ности приварки планшетов к слиткам остается ак-

туальным.

Цель настоящей работы — конечно-элементное 

моделирование и анализ технологической возмож-

ности применения новой схемы плакирования 

слитков из алюминий-литиевого сплава 1441 для 

сокращения количества проходов и междеформа-

ционных пауз при черновой прокатке.

Методы и материалы исследования

Моделирование и анализ процесса совмест-

ной горячей прокатки слитка (заготовка основно-

го металла) с двумя уложенными сверху и снизу 

планшетами (заготовки плакирующего металла) 

проводили методом конечных элементов в про-

граммном комплексе «QForm 11.0.1» в двумерной 

постановке задачи (плоская деформация) (лицен-

зия № R0-U2497-170719U197, лицензиат — МГТУ 

им. Г.И. Носова). В качестве материала слитка 

использовался алюминий-литиевый сплав 1441 

(Al—1,7Cu—0,8Mg—1,8Li). Исходное состояние 

слитка — после одноступенчатого гомогенизаци-

онного отжига (t = 450 °С, 8 ч). 

Экспериментальные данные о сопротивлении 

деформации сплава 1441 были получены мето-

дом кручения на симуляторе термомеханических 

процессов «Gleeble 3800» с применением модуля 

«Torsion». Использовались цилиндрические об-

разцы общей длиной 165 мм и диаметром 14 мм. 
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Длина рабочей зоны L = 20 мм, радиус R = 5 мм. 

Один конец образца неподвижно фиксировался 

в захватах, ко второму (подвижному) концу при-

кладывался скручивающий момент. Испытания 

проводились при температурах 450, 400, 350, 300, 

250 °C со скоростями деформации 0,01; 1; 10; 50 с–1. 

Кривые сопротивления деформации сплава 1441, 

описываемые уравнением

σs = f (ε–, ε·, t),  (2)

где ε– — эквивалентная деформация; ε·  — скорость 

деформации, с–1; t — температура, °С, были ап-

проксимированы в виде табличной функции.

В качестве материала плакирующего слоя ис-

пользовался алюминиевый сплав марки АЦпл 

(97,8 %) с химическим составом в соответствии с 

ГОСТ 4784-2019. На рис. 1 в качестве примера по-

казаны кривые сопротивления деформации алю-

миний-литиевого сплава 1441 и алюминиевого 

сплава АЦпл при скорости деформации 10 с–1 и 

различных температурах.

Моделирование выполняли для условий черно-

вой клети «Кварто 4600» стана горячей прокатки 

ПАО «КУМЗ». Согласно традиционной техноло-

гии, приварка планшетов осуществляется в пер-

вых 4 проходах по поперечной схеме прокатки, 

когда после кантовки длина слитка становится 

шириной. Поэтому для 2D конечно-элементной 

модели были приняты следующие начальные 

размеры слитка после фрезеровки: 360 ×1360 мм 

(толщина × длина). Слиток имел прямоугольную 

форму (без скосов и скруглений). Исходные разме-

ры планшетов: 15×1100 мм (толщина × длина). Об-

щие размеры слитка с уложенными сверху и снизу 

планшетами: 390 ×1360 мм (толщина × длина). Го-

рячая прокатка осуществлялась в рабочих валках 

диаметром 1150 мм. Температура нагрева слит-

ка с планшетами в печи составляла 450 °С. Время 

транспортирования от нагревательной печи до ра-

бочей клети по эмпирическим данным принимали 

равным 8 мин. Скорость прокатки в каждом чер-

новом проходе принимали равной 1 м/с, а время 

пауз между проходами — 10 с.

Для описания условий трения на контакте с ра-

бочими валками использовали закон Леванова:

τ = mk(1 – e–1,25σn/σs),  (3)

где τ — напряжение трения; m — показатель тре-

ния; σn — контактное нормальное напряжение, 

МПа; σs — сопротивление деформации, МПа; 

k — максимальное касательное напряжение при 

сдвиге, МПа (величина k пропорциональна сопро-

тивлению деформации (σs) материала согласно со-

отношению ).

Приварка планшетов осуществляется без ис-

пользования СОЖ. Поэтому показатель трения 

на контакте с рабочими валками принимался 

m = 0,95.

Рис. 1. Кривые сопротивления деформации 

алюминий-литиевого сплава 1441 

и алюминиевого сплава АЦпл при скорости 

деформации 10 с–1 и различных температурах

Fig. 1. Flow-stress curves of aluminum–lithium alloy 1441 

and ACpl alloy at a strain rate of 10 s–1 

and different temperatures

Рис. 2. Традиционная (а) и новая (б) схемы укладки 

планшетов на слиток

Fig. 2. Traditional (a) and new (б) schemes cladding plate 

placement schemes on the ingot

a

б
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Для описания условий контактного трения 

между слитком (алюминий-литиевый сплав 1441) 

и планшетами (алюминиевый сплав АЦпл) на эта-

пе приварки также использовали закон Левано-

ва (3), но с показателем трения m = 1.

По результатам конечно-элементного моде-

лирования сравнивали две схемы плакирования: 

1) традиционную (рис. 2, а), при которой верхний 

и нижний планшеты укладываются, соответ-

ственно, на верхнюю и нижнюю плоские поверх-

ности слитка, а приварка осуществляется за 4 про-

хода с абсолютными обжатиями по 6 мм; 2) новую 

(рис. 2, б), когда верхний и нижний планшеты 

укладываются в специальные углубления, пред-

варительно выполненные фрезерованием на верх-

ней и нижней поверхностях слитка, а приварка 

осуществляется за 1 проход с абсолютным обжа-

тием 24 мм.

Результаты и их обсуждение

За время транспортирования (8 мин) слитка 

с планшетами от нагревательной печи, где тем-

пература нагрева составляла 450 °С, до рабочей 

клети происходило охлаждение на воздухе. Рас-

считанное температурное поле слитка с план-

шетами перед началом прокатки показано на 

рис. 3.

Ввиду большого различия в геометрических 

размерах слитка и планшетов особое внимание 

уделялось качеству разбиения моделируемых объ-

ектов на конечные элементы. На рис. 4 показан об-

Рис. 3. Температурное поле слитка с планшетами перед началом прокатки

Fig. 3. Temperature field of the ingot with cladding plates before rolling

Рис. 4. Общий вид сетки конечных элементов

Fig. 4. General view of the finite-element mesh
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щий вид сетки конечных элементов. Принимались 

следующие максимальные размеры элементов для 

слитка и планшетов: глобальные — не более 30 мм; 

локальные — не более 10 мм; в контактной зоне 

(рис. 5) — не более 1 мм. Для инструментов на дуге 

90° задавалось минимальное количество элемен-

тов — 180.

Температурное поле после приварки планше-

тов к слитку по различным схемам представлено 

на рис. 6. Средняя температура слитка (математи-

ческое ожидание) после прокатки за 4 прохода с 

абсолютными обжатиями по 6 мм составила 399 °С 

(рис. 7, а). Средняя температура слитка (матема-

тическое ожидание) после прокатки за 1 проход 

с абсолютным обжатием 24 мм составила 422 °С 

(рис. 7, б).

Таким образом, при сокращении 3 проходов и, 

соответственно, 3 междеформационных пауз по 

Рис. 5. Сетка конечных элементов в зоне контакта

Fig. 5. Finite-element mesh in the contact zone

Рис. 6. Температурное поле после приварки планшетов к слитку по традиционной (а) и новой (б) схемам

Fig. 6. emperature field after roll-bonding of cladding plates to the ingot for the traditional (a) and the new (б) schemes 

a

б
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10 с среднее повышение температуры чернового 

раската составляет 23 °С.

Несмотря на то, что по традиционной схеме 

абсолютные обжатия за проход очень низкие и со-

ставляют всего 6 мм, тем не менее в ходе приварки 

планшетов происходит их выдавливание с поверх-

ности слитка (рис. 6, а). Это объясняется тем, что 

при прокатке деформация практически не прони-

кает во внутренние слои более прочного слитка 

(сплав 1441), а локализуется в мягком плакирую-

щем слое (алюминиевый сплав АЦпл).

Характер изменения толщины плакирующе-

го слоя по проходам при прокатке по традици-

онной и новой схемам существенно различается 

(рис. 8). После прокатки за 4 прохода с абсолют-

ными обжатиями по 6 мм толщина плакирующе-

го слоя снижается с начальных 15 мм до 8,8 мм. 

После прокатки по новой схеме за 1 проход с абсо-

лютным обжатием 24 мм толщина плакирующе-

го слоя снижается с начальных 10 мм до 9,3 мм. 

Таким образом, результаты моделирования под-

тверждают, что новая схема плакирования позво-

ляет предотвратить выдавливание планшетов с 

поверхности слитка, в том числе при высоких аб-

солютных обжатиях. И благодаря этому возмож-

но использование более тонких (уменьшенных 

на 1/3) планшетов — толщиной 10 мм взамен тра-

диционных 15 мм.

Общая начальная толщина слитка с планше-

тами (390 мм) и суммарное абсолютное умень-

шение толщины (24 мм) в традиционной и новой 

схемах было одинаковым. Однако деформи-

рованное состояние основного металла (сплав 

1441) и плакирующего слоя (чистый алюминий) 

в этих схемах прокатки существенно различает-

ся (рис. 9). 

Для описания деформированного состояния 

металла использовали безразмерную интеграль-

ную характеристику ε–, называемую накопленной 

пластической деформацией. В программе «QForm» 

Рис. 7. Гистограммы распределения температуры по объему (V ) слитка после приварки планшетов 

по традиционной (а) и новой (б) схемам

Fig. 7. Temperature distribution histograms over the ingot volume (V ) after roll-bonding according 

to the traditional (a) and the new (б) schemes 

Рис. 8. Изменение толщины плакирующего слоя 

по проходам после прокатки по традиционной (а) 

и новой (б) схемам

Fig. 8. Variation in cladding-layer thickness after rolling 

according to the traditional (a) and the new (б) schemes 
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Рис. 9. Поле деформаций после прокатки по традиционной (а) и новой (б) схемам

Fig. 9. Strain field after rolling according to the traditional (a) and the new (б) schemes 

Рис. 10. Гистограммы распределения накопленной деформации (ε–) по объему (V ) слитка (основного металла) 

после прокатки по традиционной (а) и новой (б) схемам

Fig. 10. Distribution histograms of accumulated strain (ε–) over the ingot volume (V ) (base metal) after rolling according 

to the traditional (a) and the new (б) schemes 

a

б
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для определения ε– применялось численное инте-

грирование интенсивности скоростей деформа-

ции для каждого узла [28]:

  (4)

где  — интенсивность скорости деформации в уз-

ле, с–1; Δbn — шаг расчета по времени, с; n — номер 

шага расчета по времени.

Средняя накопленная деформация в слитке 

(математическое ожидание) после прокатки за 

4 прохода с абсолютными обжатиями по 6 мм со-

ставила 0,05 (рис. 10, а). Средняя накопленная де-

формация в слитке (математическое ожидание) 

после прокатки за 1 проход с абсолютным обжати-

ем 24 мм оказалась в 2 раза более высокой и соста-

вила 0,10 (рис. 10, б).

В плакирующем слое, напротив, средняя нако-

пленная деформация (математическое ожидание) 

после прокатки по традиционной схеме была выше 

и составила 0,98 (рис. 11, а) в сравнении с 0,66 по-

сле прокатки по новой схеме (рис. 11, б). Сравни-

вая гистограммы распределения деформаций на 

рис. 11, следует отметить более равномерный ха-

рактер деформации плакирующего слоя при про-

катке по новой схеме.

Для условий черновой клети «Кварто 4600» 

стана горячей прокатки ПАО «КУМЗ» выполне-

на оценка энергосиловых параметров реализации 

процесса по различным схемам. При этом следу-

ет отметить, что при 2D-моделировании ушире-

ние не учитывалось, а общая ширина слитка с 

планшетами принималась постоянной и равной 

3300 мм. На основе моделирования получено, что 

при прокатке по традиционной схеме за 4 прохода 

с обжатиями по 6 мм максимальные усилия изме-

няются от 21200 кН в 1-м проходе до 25100 кН в 

4-м проходе (рис. 12). При прокатке по новой схеме 

за 1 проход с обжатием 24 мм максимальные уси-

лия составляют 34 000 кН (рис. 12). 

Следует отметить, что расчетные значения 

усилий прокатки по обеим схемам не превышают 

допустимый уровень 80000 кН, соответствующий 

характеристикам черновой клети «Кварто 4600» 

ПАО «КУМЗ».

Таким образом, конечно-элементный ана-

лиз показал технологическую возможность при-

менения новой схемы плакирования слитков 

из алюминий-литиевого сплава 1441. При этом 

при использовании плоских слитков сечением 

390 ×1360 мм должна быть скорректирована схема 

фрезерования по широким граням (рис. 13).

Рис. 11. Гистограммы распределения накопленной деформации (ε–) по объему (V ) плакирующего слоя 

после прокатки по традиционной (а) и новой (б) схемам

Fig. 11. Distribution histograms of accumulated strain over the cladding-layer volume (V ) after rolling according 

to the traditional (a) and the new (б) schemes 
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Выводы

1. Проведен конечно-элементный анализ тех-

нологической возможности применения новой 

схемы плакирования слитков из алюминий-ли-

тиевого сплава 1441. Взамен традиционной схемы 

плакирования, предусматривающей приварку 

планшетов к слитку за 4 прохода с абсолютными 

обжатиями по 6 мм, предложено укладывать план-

шеты в специальные углубления, предварительно 

выполненные фрезерованием на верхней и ниж-

ней поверхностях слитка, а приварку осущест-

влять за 1 проход с абсолютным обжатием 24 мм.

2. Новая схема плакирования дает возможность 

существенно сократить общее количество про-

ходов и междеформационных пауз при черновой 

прокатке и улучшить за счет этого тепловое состо-

яние раската перед чистовой прокаткой. Предпо-

лагается, что более высокая температура позволит 

снизить вероятность образования прикромочных 

трещин при чистовой прокатке. При сокращении 

3 проходов и, соответственно, 3 междеформацион-

ных пауз по 10 с среднее повышение температуры 

составляет 23 °С. 

3. Новая схема плакирования предотвращает 

выдавливание планшетов с поверхности слитка, 

в том числе при высоких абсолютных обжатиях. 

Благодаря этому возможно использование более 

тонких планшетов — толщиной 10 мм взамен тра-

диционных 15 мм.

4. Деформированное состояние основного ме-

талла (сплав 1441) и плакирующего слоя (алюми-

Рис. 12. Усилия при прокатке по традиционной и новой схемам

Fig. 12. Rolling forces in the traditional and new cladding schemes

Рис. 13. Удаляемая фрезерованием часть слитка при реализации новой схемы плакирования

Fig. 13. Portion of the ingot surface to be removed by milling in the new cladding scheme
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ниевый сплав АЦпл) в двух рассматриваемых схе-

мах прокатки существенно различается. Средняя 

накопленная деформация в слитке (математиче-

ское ожидание) после прокатки за 4 прохода с аб-

солютными обжатиями по 6 мм составила 0,05, а 

после прокатки по новой схеме за 1 проход с абсо-

лютным обжатием 24 мм оказалась в 2 раза более 

высокой — 0,10. При этом характер деформации 

плакирующего слоя при прокатке по новой схеме 

был более равномерным.

5. Результаты конечно-элементного модели-

рования могут быть использованы для совершен-

ствования и оптимизации технологических режи-

мов горячей прокатки плакированных листов и 

полос из алюминий-литиевого сплава 1441 в усло-

виях ПАО «КУМЗ».
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