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Abstract: The study addresses the problem of predicting the grain structure in large-scale castings made of the VZhL14N-VI nickel-base
superalloy, which are bodies of revolution with very thin walls. To this end, the ProCast casting simulation software was used, including its
CAFE module for grain structure prediction. Cooling rates in various areas of the casting were determined by computer simulation. Grain size
measurements were then performed on real samples produced under industrial conditions at PISC UEC Kuznetsov (Samara, Russia), and the
correlation between grain size and cooling rate was established. It was found that grain size is affected not only by the cooling rate, but also by
the geometric features of the casting, particularly its thermal modulus (according to Chvorinov’s rule). The results show that ProCast can be
effectively used to predict casting defects in large-scale castings made of nickel-base superalloys. A comparison of the temperature-dependent
density, specific heat capacity, and thermal conductivity of the VZhL14N-VI alloy — obtained through both direct measurements and ProCast
thermodynamic database calculations — showed that the computed data are sufficiently accurate for use in casting process simulations. The
CAFE module was found to be applicable for predicting grain structure in castings; however, accurate simulation requires the specification of
key parameters, primarily the degree of undercooling during solidification and the number of grain nuclei in the alloy. Since these parameters
cannot be measured directly, further research is required to determine them.
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Annorauus: B pabore paccMoTpeHa nmpobieMa MporHo3upoOBaHUS 36PEHHOM CTPYKTYPbl B KPYITHOTra0apUTHBIX OTJIMBKAX U3 HUKEJIEBOTO
KaporpouHoro criiaBa BXKJI114H-BU, npeacTapisiioninx co6oii Teja BpalleHus ¢ BeCbMa TOHKUMU JTUTBIMU CTeHKaMU. [IJ1s1 9TOTO UCTIONb-
30BaJjlaCh CUCTEMa KOMITbIOTEPHOI'O MOACIMPOBAHUS JUTEHBIX TIpolieccoB ProCast ¢ MoxysieM 11st pacueTa 3epeHHO# cTpykTypsl CAFE.
[TyTeM KOMIIBIOTEPHOTO MOIEIMPOBAHSI OTIPEIeIeHa CKOPOCTh OXJIaXKACHUS B PA3IMYHBIX YaCTSIX OTIMBKU, MTOCJIE YeTO Ha peabHBIX 00-
pasuax, MoJydyeHHBIX B YCJIOBUSIX MPpoMbIlieHHOro npoussoactsa B [1AO «OK-KysHenos» (r. Camapa, Poccust), onpeneneHbl pazMepsl
3epeH U MOCTPOEHA MX 3aBUCUMOCTH OT CKOPOCTHU OXJIAXKICHUS OTTUBKU. YCTAHOBJICHO BIUSIHYE HA pa3Mep 3epHA HE TOJIBKO CKOPOCTHU OX-
JIaXXIEHU S, HO U TEOMETPUYECKUX OCOOEHHOCTEH OTJIIMBKHM, B YACTHOCTH €€ TEPMUUECKUIT MOy b (MpUBeAeHHas TonuHa). [lokazaHo, 4To
cuctema ProCast MoxeT ObITh 3(D(EeKTUBHO UCTIOIb30BaHA IJIsI TPOTHO3UPOBAHUSI TUTEHHBIX 1e(EKTOB B KPYITHOTa0APUTHBIX OTIMBKAX M3
KapoMpPOYHBIX HUKEJIEBbIX CIJIABOB. [Ipy 3TOM MyTeM CpaBHEHU s TEMIEPATyPHBIX 3aBUCUMOCTEM MIOTHOCTH, TEMJIOEMKOCTHU U TEIJIONPO-
BonHocTHu criaBa B2KJT14H-BU, nmony4yeHHBIX TPSIMBIMU U3MEPEHUSIMU U PACYETOM C UCITOJIb30BaHMEM TepMOoaMHaMuueckoi 6a3bl ProCast,
BBISIBJICHO, UTO PACYETHBIC JaHHbIE JOCTATOYHO TOYHBI JJIs1 UCTIOJb30BaHUS UX B KOMITBIOTEPHOM MOAEJMPOBAHUY JIUTEHHBIX TPOLECCOB.
YcranosieHo, uto Mmonyib CAFE MoxeT ObITh BOCTpe6OBaH 1151 TPOrHO3MPOBAHMSI 36pPEHHOI CTPYKTYPHI B OTJIMBKE, OMHAKO IUJISI €T0 KOp-
PEKTHOTO MPUMEHEH U] HEOOXOAMMO YCTaHOBJICHME MapaMeTPOB MOJEIMPOBAHUSI, TIPEXK /1€ BCETO BEJIMYMHBI TEPEOXTaXKACHU S IPU 3aTBEP-
NeBAaHUM U KOJMYECTBA 3apOAbILICii 3epeH B cruiaBe. [10CKONBKY 9TH MapaMeTphl He MOAIAIOTCS MPSIMOMY M3MEPEHUIO, UX OINpe/ieIeHIe
MOTPeOyeT NOMOTHUTETbHBIX UCCIEIOBAHU M.

KuroueBbie cioBa: xkaporpouHble HUKeneBble crutaBbl, BXKJI14H-BU, nuThe 1Mo BBITIIABISIEMBIM MOJCISIM, pa3Mep 3epHa, MOACINPOBaHNE
nuTeitHbIX npoueccos, ProCast, CAFE.

BaaronapnocTn: PaboTa BbinosHeHa pu GpMHAHCOBOM NoAAep:kKe MUHUCTEpCTBa HAyKH 1 BBICIIero oopasoBaHus Poccuiickoit @enepannu
B pamkax [loctanosnenust [1paButenbctBa Ne 218 1o cornamieHuio o nmpexpoctaBiennu cyocuauu Ne 075-11-2022-023 ot 06.04.2022 1. «Co-
31aH1e TeXHOJIOTUH U3TOTOBJICHU ST YHUKATbHBIX KPYITHOra0apUTHBIX OTIMBOK M3 KapOMPOYHBIX CIIIaBOB AJ151 Ta30TYPOMHHBIX IBUTATENCH,
OPUEHTUPOBAHHOM Ha UCTIOTb30BAHNE OTEUECTBEHHOTO 000PYIOBAHUSI M OPTAHU3ALIMIO COBPEMEHHOT0 pecypcoddheKTUBHOTO, KOMITBIOTE-
POOPHEHTHPOBAHHOIO TUTEHHOTO MPOU3BOICTBA.
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CTPYKTYPbl KPYIHOrabapuTHOM OTIIMBKM M3 XaponmpouyHoro Hukesesoro criasa BXKJI14H-BU. Hzeecmus eysos. Lleemnas memannypeus.
2025;31(2):55—65. https://doi.org/10.17073/0021-3438-2025-2-55-65

Introduction

Nickel-base superalloys are widely used as materials This alloy is used for large-scale cast GTE com-
for manufacturing combustion chamber components of ponents and is characterized by a high content of the
gas turbine engines (GTEs) [1; 2]. The composition of strengthening y” phase (Nis(Al,Ti)) [I—3]. In addition,
the VZhL14N-VI alloy (OST 1 90126-85) is given below  the alloy is further strengthened by the precipitation of

(wt. %, max)': fine particles of & (Ni3Nb), 1 (Ni3Ti), and ¢ (CrFeMoNi,
N Balance CrMoNi, (Cr,Mo);Ni) phases, as well as MC, M23C6,
Careeeeeeeee e 0.08 and M6C carbides (where M is mainly Cr, but also Ti,
Clicieieeeee e 20.0 Nb, and Mo) [4—8]. The high performance properties of
LY (o RSO 5.0 VZhLI14N-VI castings depend on their as-cast structure
N O 1.5 and its evolution during heat treatment [1; 4; 9], which
TR 2.9 are determined by a combination of grain size and the
NDucerevveeeeenessssssessseseees 2.8 amount, size, and distribution of carbide and strength-
F.ovrrrrereersesssssssneeesessenn 10.0 ening phases.

The grain size in a casting is affected by the cooling

I Unless otherwise stated, all compositions are given rate achieved during the solidification interval of the al-

inwt. %. loy. An increase in cooling rate leads to a higher ther-
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mal gradient in the melt ahead of the solidification front,
which results in the formation of a larger number of crys-
tals in the two-phase region of the solidifying casting. As
a result, competitive grain growth leads to grain refine-
ment [10—12].

To simulate the grain structure in castings, the Pro-
Cast (ESI Group) casting simulation system is com-
monly used, which includes a dedicated CAFE module
for grain structure prediction [13]. This module enables
the simulation of grain size, shape, and growth direction
in castings with equiaxed, columnar, or single-crystal
structures [14]. The CAFE module has shown good per-
formance in predicting grain structures in small-scale
nickel-base superalloy castings, including turbine blades
[15, 16]. However, its application to large-scale castings
is limited by the extremely large number of elements in
the computational mesh.

In this study, the effect of casting conditions in a shell
ceramic mold on the macrostructure of a VZhL14N-VI
alloy casting was investigated using computer simula-
tion methods. An attempt was also made to use the CA-
FE module to predict grain size in large-scale castings.
The simulation results were compared with experimen-
tal measurements of grain size on samples cut from the
casting, with the aim of assessing the effect of cooling
rate on grain size in large-scale castings with significant
wall thickness variations.

Materials and methods

The test casting was produced using refractory
shell molds by investment casting technology. Fused
quartz of various fractions, manufactured by JSC
DINUR (Pervouralsk, Russia), was used as the filler
for both slurry and stucco coatings. Ultracast One+
and Ultracast Prime binders (Technopark LLC, Mos-
cow, Russia) were selected for preparing the refractory
slurry. The charge material was a ready-made batch
of VZhL14N-VI alloy produced by the All-Russian
Scientific Research Institute of Aviation Materials
(VIAM, Moscow, Russia). Melting and pouring were
performed using the VIAM-24 vacuum induction
melting and casting unit (Russia) according to the
process specifications of PJSC UEC-Kuznetsov (Sa-
mara, Russia).

To reveal the macrostructure, a metallographic
template was cut from the casting (Fig. 1) after heat
treatment, in a plane passing through the axis of rota-
tion. The sectioned surface of the template was ground
and polished using abrasive materials to obtain a mir-
ror-like metallographic surface. The surface was then
etched using Marble’s reagent (20 g Cu,SOy, 100 mL hyd-

rochloric acid, 100 mL ethanol) [17]. Macrostructure
images were acquired using a Canon EOS 6D digital
camera equipped with a Volna-9 macro lens and exten-
sion tubes.

The casting process simulation was carried out
using the ProCast software (ESI Group), which has
proven effective for simulating investment casting
processes involving ceramic shell molds [18—20].
The CAD model included representations of the
casting, ceramic mold, insulation, flask, and inter-
nal furnace space. The simulation was performed
taking into account a 20-minute pre-cooling period
of the mold prior to pouring (pouring temperature:
1490 °C), as well as radiative heat transfer. A more
detailed description of the simulation procedure is
available in [13]. The thermophysical properties of
the refractory materials used in the simulation were
found to be in good agreement with data reported by
other researchers [21; 22] The grain structure of the
casting was simulated using the CAFE module of the
ProCast software. The initial CAFE calculation pa-
rameters were adopted from [23].

To refine the thermophysical properties of the
VZhLI4N-VI alloy, measurements were conducted to
determine the density (p), specific heat capacity (C,),
thermal conductivity (A), and thermal diffusivity (A =
= apC,), as well as their temperature dependence.

Density at 25 °C was measured using the hydro-
static weighing method. The p(f) dependence was cal-
culated based on the thermal expansion coefficient
measured with a DIL 402C dilatometer (NETZSCH,
Germany). Thermal diffusivity was evaluated by
the laser flash method using an LFA 447 instrument
(NETZSCH). Specific heat capacity was measured
using a DSC 204 F1 Phoenix differential scanning
calorimeter (NETZSCH).
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Fig. 1. Schematic cross-section of the test casting

Maximum overall dimension: 690 mm

Puc. 1. Dcku3 TeCcTOBOI OTJUBKU B pa3pese

MakcumainbHblil rabapuTHBIit pazmep 690 Mm
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Results and discussion

The test component, produced at PJSC UEC-
Kuznetsov, is a large shell-type casting in the form of a
body of revolution, with a maximum diameter of about
685 mm and a predominant wall thickness of 6 mm.
Figure 2 shows its macrostructure in a longitudinal sec-
tion through the axis of rotation.

It can be seen that grain size varies significantly
across different areas of the casting. During the solid-
ification of massive regions near the mold surface, a
fine-grained structure forms, which rapidly transitions
into a coarse-grained one. In the thin-walled sections,
such transitions are not observed, and the structure re-
mains relatively homogeneous and fine-grained. It is
well known that such a structure is most desirable in
polycrystalline castings, including those made from
nickel-base superalloys, as it ensures optimal mechan-
ical properties of the cast part in accordance with the
Hall—Petch relationship [10].

Thus, the highest cooling rates during solidifica-
tion were observed in the regions with the smallest

grain size, while the lowest cooling rates corresponded
to coarser-grained areas. In practice, direct meas-
urement of the cooling rate in a solidifying casting
is difficult; therefore, the pouring and solidification
processes of the VZhL14N-VI alloy were simulated to
estimate the cooling rates in different regions of the
casting.

Due to equipment limitations, direct measurements
of the thermophysical properties of the VZhLI4N-VI
alloy were restricted to a relatively narrow temperature
range (up to 300 °C). To extend the dataset, tempe-
rature-dependent properties were calculated using the
ProCast thermodynamic database. These calculated
values were validated by comparing them with experi-
mental results. Fig. 3 shows both measured and simu-
lated temperature dependencies of density, specific heat
capacity, and thermal conductivity for the VZhL14N-VI
alloy. The comparison confirms a good level of agree-
ment. The calculated data were subsequently used in the
simulation workflow.

The cooling rate in a ceramic shell mold is affected
by numerous external factors, all of which were ac-

Fig. 2. Grain structure of the test casting wall (etched)

1—9 — grain size measurement areas

Puc. 2. MakpocTpyKTypa CTEHKH TECTOBOI OTIMBKHM (TPaBJIEHO)

1—9 — obnactu onpeneneHust pa3MepoB 3epeH
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counted for in the simulation [13]. Fig. 4 presents the
relationship between grain size and cooling rate within
the solidification interval, based on simulation results at
the locations where grain size measurements were per-
formed, as shown in Fig. 2.

At constant wall thickness, higher cooling rates
generally result in finer grain sizes. However, this
trend is not observed in the relatively thick-walled
areas corresponding to points 2 and 5 in Fig. 2: the
grain sizes there are nearly identical despite diffe-
rences in cooling rate. Fig. 5 presents the calculated
thermal modulus (equivalent wall thickness) [12] and
the temperature distribution across the cross-section
of the casting at the moment of mold filling. It can
be seen that the areas corresponding to points 2 and
5 had lower initial temperatures — close to the alloy’s
liquidus temperature — compared to neighboring are-
as. In addition, these areas exhibited a higher thermal
modulus than the surrounding regions in the same
cross-section.
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These findings suggest that in castings with complex
geometry, the relationship between grain size and wall
thickness is not always clearly defined when comparing
areas of different thicknesses. However, a consistent
correlation between grain size and thermal modulus
can be observed in areas with similar wall thickness.
For example, in areas 1, 9, and 3 (see Fig. 2), the grain
size increases progressively (see Fig. 4), which corre-
sponds to an increase in the equivalent wall thickness
(see Fig. 5). This correlation is logical, as the thermal
modulus is defined as the ratio of the volume of a giv-
en casting region to its cooling surface area. A higher
thermal modulus indicates slower heat removal and a
more uniform temperature distribution in the solidify-
ing casting. Therefore, grain size appears to depend not
only on the cooling rate, but primarily on the degree of
undercooling achieved in the molten alloy ahead of the
solidification front [24; 25]. This principle underlies
the grain size prediction model implemented in Pro-
Cast [20; 23].

C,, J(gK)
0-

0.8
0.6 2

-

0.4 4

0.2

0 400 800 1200 1600 £, °C

Fig. 3. Temperature dependence of density (a),
specific heat capacity (b), and thermal conductivity (c)
of the VZhLI14N-VI alloy

1 — experiment;

2 — simulation using the ProCast thermodynamic database

Puc. 3. 3aBucumMocTu MIOTHOCTH (@),
TEeTI0eMKOCTH (b) ¥ TETLJIONIPOBOIHOCTH (C)

craBa BXKJI14H-BU ot remnepatypsl

1 — DKCTIEpUMEHT,

2 — pacueT ¢ MOMOIIbIO TepMOAMHaAMUYecKoi 6a3bl ProCast
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Figure 6 shows the simulation results for the solid
phase fraction in the casting at the beginning and just
before the end of solidification. It can be seen that an

Grain size, mm

Location in the casting ‘Wall
14 3 O Y-shaped-junction ~ thickness, mm
T O Thermal node o6
& Thick wall s
A Thin wall 10
1.2 , w O

[IRE
|:|14
[ ]

1.0 1

0.8 4

Cooling rate, °C/min

Fig. 4. Grain size vs. cooling rate in the solidification interval
for the casing-shaped test component

Points /—9 correspond to the locations shown in Fig. 2

Puc. 4. 3aBucumocTts pa3mepa 3epHa B OTIUBKE «KOPITYC»
OT CKOPOCTH OXJIaXXIEHU S B UHTEPBaJie KPUCTATTU3ALUYN

Ludpst /—9 cOOTBETCTBYIOT TOYKAaM, 0003HAUEHHBIM Ha puC. 2

1.00

0.95

0.90

0.85

a

isolated thermal node forms at the Y-shaped junction
of the walls (position 4), which leads to the forma-
tion of shrinkage porosity in this area, confirmed by
metallographic examination. The presence of shrink-
age defects does not affect the grain size in the cor-
responding areas (see Fig. 3). It should be noted that
the revealed porosity zone was not identified during
production using non-destructive testing methods and
was discovered only after analyzing the simulation re-
sults. This demonstrates the great potential of comput-
er-aided casting process simulation for improving the
quality of castings.

The results of grain structure simulation using the
CAFE module are shown in Fig. 7, with the input pa-
rameters listed in the accompanying table. The initial
simulation (Fig. 7, @) was performed using parameter
values proposed for the IN713C nickel-base superal-
loy [23]. However, since the VZhL14N-VI alloy has a
different composition and was cast under conditions
differing from those described in [23], the simulation
parameters may vary significantly, and the simulation
results may not correspond to the actual grain struc-
ture observed in the casting. Nevertheless, due to the
lack of verified data for VZhL14N-VI, the param-
eters for IN713C superalloy were used as a starting
point [23].

As shown in Fig. 7, a, the simulated grain sizes are
significantly larger than those observed in the real cast-
ing. Nevertheless, the main trends are consistent with

WA

1410

1370

R —

1350

Fig. 5. Thermal modulus (3) — equivalent wall thickness (a), and temperature at the moment of mold filling (b)

Puc. 5. Tepmuueckuit MOy Ib OTIIMBKY (8) — MPUBEICHHAsI TOJNIIMHA CTEHKY (&)

M TeMIlepaTypa B MOMEHT 3aIoJHeHu s hopMbI (b)
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Solid phase

fraction
1.000
0.933
0.867
0.800
0.733
0.667
0.600
0.533
0.467
0.400
0.333
0.267
0.200
0.133
0.067
0

Fig. 6. Simulation results: solid phase fraction after 95 s (a) and 157 s (b) from the start of pouring; structure in area 4
on a polished sample (c¢) (dashed outline indicates the porous region; individual pores are marked with circles)
and on an etched sample (d)

Puc. 6. PesynbraTel MomeanpoBaHUs: 00 TBepaoii dassl cirycts 95 ¢ (a) u 157 ¢ (b) ¢ Havasa 3aTUBKU
U CTPYKTYpa B 30HE 4 Ha IOJUPOBAHHOM (MMYHKTUPOM BbIJIeJIeHa 00J1aCTh TOPUCTOCTH, OTACTbHBIMU OKPYKHOCTSIMU —
BU3YyaJIbHO 3aMeTHBIE TTOPHI) (¢) 1 TpaBieHOM (d) oOpasiax

Fig. 7. Results of grain structure simulation using the CAFE module
Simulation cases: / (a), 2 (b), 3 (c), and 4 (d) (see table)

Puc. 7. Pe3ynbraThl MOICIMPOBAHMSI 36PEHHOI CTPYKTYPbl OTJIMBKHU ¢ UcnojibzoBaHueM moayist CAFE
BapuanTsl MmonenupoBanus I (a), 2 (b), 3 (¢) u 4 (d) (cM. TabauiLy)

the actual structure observed in the casting. The main are defined separately for the casting volume and the
parameters affecting the simulated grain size include mold-contacting surface layer [16].

the average undercooling (Af,,), its deviation (Afg,), Since the initial simulation produced grains larger
and the number of grain nuclei in the melt (n,,,,), which  than those found in the actual casting — while the overall
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Key parameters in grain structure simulation with the CAFE module

OCHOBHbIE TTapaMeTPbl MOJIETMPOBAHUSI 36PEHHOI CTPYKTYPBI OTJIMBKHU € ucoib3oBaHueM moayist CAFE,

NPpUMEHABIIUECCA B pa60Te

A K Atger, K Mnaxs m‘3, m—2
Simulation case
Volume Surface Volume Surface Volume Surface
1123] 5-107 1-10%
2 1-107 5-10%
6.5 5.5 0.7 0.2
3 5-107 1-10°
4 1-108 5-10°

distribution pattern remained comparable — subsequent
iterations retained the same undercooling parameters
but increased the number of grain nuclei. In practice, it
is extremely difficult to determine the actual number of
grain nuclei present in the alloy under industrial casting
conditions. Therefore, this number must be adjusted by
comparing simulation results with experimentally ob-
served grain structures. This approach requires a sepa-
rate, resource-intensive study.

The results of the follow-up simulations are shown in
Fig. 7, b—d. 1t is evident that increasing the number of
grain nuclei in the alloy leads to grain refinement in the
casting.

Thus, it is possible to select a combination of ini-
tial parameters that yields results correlating with data
obtained from actual castings. These parameter values
can subsequently be used in simulations to predict grain
structure in castings. However, selecting such param-
eters requires additional studies on a series of castings
followed by corresponding simulations. It should also be
noted that grain structure simulation in large-scale cast-
ings is a highly resource-intensive and time-consuming
process that requires the use of high-performance com-
puting systems.

Conclusions

1. Grain size in large-scale castings made of nick-
el-base superalloys depends on the thermal conditions
during solidification — primarily the cooling rate,
equivalent wall thickness, and thermal gradient devel-
oped in the casting during solidification.

2. Computer simulation using the ProCast software
enables the determination of cooling rates in various ar-
eas of the casting and helps identify their effect on grain
size in walls of similar thickness. In cases of significant
variation in wall thickness, grain size is influenced by
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multiple factors and does not always correlate directly
with cooling rate.

3. The CAFE module can be used to simulate grain
size in the walls of large-scale castings made of nick-
el-base superalloys; however, preliminary studies are
required to determine key simulation parameters, espe-
cially the number of grain nuclei.

4. The ProCast simulation software can also be used
to reliably predict shrinkage-related casting defects in
large-scale castings made of nickel-base superalloys.
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