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Abstract: The composite materials based on the Al—Si system alloys, strengthened with a highly dispersed titanium carbide phase, possess
improved characteristics and belong to the group of promising structural materials. Currently, self-propagating high-temperature synthesis
(SHS) based on the exothermic interaction, wherein titanium and carbon precursors directly involve in the melt, is the most accessible and
effective method to obtain them. This paper proves the feasibility and demonstrates the successful synthesis of a 10 wt.% titanium carbide
phase in the melt of the AKIOM2N alloy, resulting in the AKIOM2H-10% TiC composite material. Samples of the matrix alloy and the
composite material were subjected to heat treatment according to the T6 mode, with various temperature-time parameters for hardening and
aging operations. Based on the results, optimal heat treatment modes were selected to ensure maximum hardness. We studied the macro- and
microstructure of the obtained samples and performed micro X-ray spectral and X-ray diffraction phase analyses. Different groups of properties
underwent comparative tests. It was established that the density of AK1I0M2N—10%TiC samples before and after heat treatment, according to
optimal modes, is close to the calculated value. We showed that the combination of reinforcement and heat treatment significantly increases
hardness, microhardness, and compressive strength, with a slight decrease in ductility. Additionally, it maintains the values of the coefficient
of thermal linear expansion, high-temperature strength, and resistance to carbon dioxide and hydrogen sulfide corrosion at the level of the
original alloy. The greatest effect was observed during the investigation of tribological characteristics: heat treatment of the composite material
according to the recommended mode significantly reduces the wear rate and friction coefficient, eliminates seizure and tearing, and prevents
temperature rise due to friction heating.
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Bbi0op TepMuuecKoii 00padOTKH M UCCJIeJOBAHNE

ee BJMSAHNUS HA CTPYKTYPY U CBOICTBa
kommno3unuonnoro marepuaja AK1I0M2H—-10%TiC,
noJjydenHoro meroaom CBC B pacniaBse
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AunHotanus: KoMno3niiMoHHbIe MaTepuasbl Ha OCHOBE CIJIaBOB cUcTeMbl Al—Si, ympouHeHHbIE BbICOKOAMUCTIEPCHOM (a3oil KapOu-
1a TUTaHa, XapaKTepU3YyIOTCs YAYYIIEHHBIMU CBOMCTBAMM M OTHOCSITCSI K TPYTIINE MePCHEeKTUBHBIX KOHCTPYKIIMOHHBIX MaTepuajoB.
B HacTosiee BpeMst HauboJjiee TOCTYITHBIM U 3D GHEKTUBHBIM CITOCOOOM MX TIOJYUEHUs SIBISIETCSI CaMOPACTIPOCTPAHSTIONINTICS BBICO-
koremrnepaTypHblit cuHTe3 (CBC), 0CHOBaHHBII Ha 9K30TEPMUUYECKOM B3aUMOJIEUCTBUM NMPEKYPCOPOB TUTAHA U yTJIEpOJa HETIOCPEeI-
CTBEHHO B pacriyiaBe. B pabote o60cHOBaHa 11e71ecO00Pa3HOCTD M TTOKa3aH yCIelHbli onbIT cuHTe3a 10 Mac.% da3bl kKapouga TuTaHa
B pacrurase criaBa AK10M2H u moaydeHust KomnosurnoHHoro Mmarepuana AKI0M2H—10%TiC. Ha o6pa3siax MaTpUIHOTO CIIaBa U
MOJIYYEeHHOTO Ha €r0 OCHOBE KOMITO3UIIMOHHOTO MaTeprajia peajn3oBaHa TepMudeckas 00paboTka 1mo pexxumy T6 ¢ pa3audHBIMU TEM-
nepaTypHO-BpPEeMEHHBIMU MTapaMeTpaMy ONepaluil 3aKajlky U CTapeHUsI, IO pe3yJbTaTaM KOTOPBIX BHIOpaHbI ONTUMaIbHbIE YCIOBU S
TepMO0OOpPabOTKH, obecreunBalolIe MoTyueHne MaKCuMaabHOU TBepaocTu. MccnenoBana Makpo- 1 MUKPOCTPYKTYpa, MPOBEAECHBI
MUKPOPEHTTEHOCTEKTPaAbHbI/ U PEHTTeHO(a30BbIii aHATU3bI MOJYYSHHBIX 00pa31oB. BbIMOTHEH KOMIJIEKC CPABHUTEIbHBIX UCTIbI-
TaHMUi1 pa3HBIX IPYIIT CBOCTB. YcTaHOBIEeHO, 4TO 00pa3ibsl AKI0M2H—10%TiC no u nociie mpoBeaeHUsI TEPMUUYECKON 00paboTKH 10
ONTUMAaJbHBIM PEXMMaM UMEIOT MJIOTHOCTb, OJU3KYIO K pacyeTHOMY 3HauyeHUIo. [TokazaHO, YTO COBMECTHOE MPOBEIEHUE apMUPO-
BaHUS U TEPMOOOPAOOTKM CIOCOOCTBYET CYLIECTBEHHOMY MOBBIIIEHUIO NTOKa3aTeaeil TBEPAOCTH, MUKPOTBEPAOCTH U MPOYHOCTH Ha
cxKaThe Py He3HAYMTEJIbHOM YMEHbIIEHUM TIJACTUYHOCTH, a TaKKe MO3BOJISIET COXPAHUTDh 3HaYeHUsI KO3 dHIIMeHTa TEepMUUIECKO-
ro JUHEWHOTO pacUIMpPeHUsl, KapOMPOYHOCTH M CTOMKOCTU K YIJIEKMCIOTHON M CepOBOIOPOIHON KOPPO3UM Ha YPOBHE MCXOIHOIO
crutaBa. HauGonbimmii ahhekT oTMeueH mpu ncclieIOBAaHUM TPUOOJIOTHISCKUX XapaKTePUCTUK: TTPOBEICHNE TEPMUIECKOI 00paboTKU
KOMTIO3UIIMOHHOTO MaTepualia Mo peKOMEeHIOBAHHOMY PEXHMMY CTIOCOOCTBYET CyIIECTBEHHOMY CHUKEHUIO CKOPOCTHU U3HAIIIMBAHU S
1 Ko3(DdOULIMeHTa TPEeHM s, TO3BOJISIET UCKIIOUNTDH CXBAaThIBAHUE U TTOSIBJICHME 3aJUPOB, a TAKKE HE NOTYCTUTD MOBBIIIEHU ST TeMIIepa-
TYPBI BCJIEACTBUE Pa30TpeBa MPU TPEHUU.

KioueBbie cjioBa: KOMITO3MIIMOHHBIN MaTepuas, aJlOMUHUIA, pacrjiaB, KapOua TUTaHA, CAMOPACIIPOCTPAHSIIOIINIACS BHICOKOTEMITEpa-
TypHbIit cuHTe3 (CBC), Tepmuueckas oopaborka.
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Introduction

The Al—Si system alloys, commongly known as si-
lumins, are among the most common cast aluminum
alloys. They are characterized by high casting proper-
ties, satisfactory weldability, and corrosion resistance,
making them suitable for manufacturing medium
and large critical duty cast parts such as compressor
housings, crankcases, cylinder heads, pistons, and more.

Special alloys, which contain additional alloying
components besides silicon, such as Cu, Mg, Mn, Ti,
and less frequently Ni, Zr, Cr, etc., are the most com-

mon. The introduction of such additives enhances the
strength characteristics of silumins, and the presence
of copper and magnesium allows for heat treatment
according to the T6 mode, which includes harden-
ing followed by artificial aging to achieve additional
strengthening. However, it remains important to find
ways to further enhance the mechanical properties of
silumins, as even after alloying and heat treatment,
their properties remain lower than those of duralu-
mins [1].
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One of the most promising approaches is creat-
ing casting composite materials based on silumins by
combining a matrix alloy with a dispersed phase con-
stituted of particles of silicon or titanium carbides [2;
3]. Silicon carbide is produced in large volumes and
is more affordable. However, it can react with the SiC
filler and the matrix, forming the hexagonal lamellar
Al4C3 phase, which leads to instability in physical
and mechanical properties and a decrease in corrosion
resistance [4]. Titanium carbide reinforcement is less
common but is a better choice: firstly, unlike the SiC
hexagonal lattice, titanium carbide has a FCC lattice
close in size to the lattice of matrix aluminum, so dis-
persed particles of this compound can effectively act
as crystallization centers. Secondly, titanium carbide
is characterized by higher physical and mechanical
properties, such as a melting point of 7 ., = 3433 K
(compared to 2873—2970 K for SiC); Young’s mo-
dulus E = 440-10° N/m? (>3350-10° N/m?); hardness
HV = 32-10° N/m? (24+:28-10° N/m?); strength G, =
= 1.2+1.54-10° N/m? (0.4+1,7-10° N/m?) [5].

The final characteristics of composite material
reinforced with dispersed carbide phases are largely
determined by its production method [6; 7]. In terms
of technological availability and cost-effectiveness,
liquid-phase methods are preferable. These methods
are subdivided into ex situ, where reinforcing particles
are prepared in advance outside the matrix and later
introduced into the melt, and in situ, where reinforc-
ing particles are synthesized by chemical reactions di-
rectly in the matrix alloy during composite fabrication
[8]. The most common method from the first group is
mechanical mixing, which often leads to contamina-
tion with oxides and impurity elements and excludes
the possibility of obtaining a highly dispersed rein-
forcing phase, as the particles tend to agglomerate [9].
The more promising method from the second group,
self-propagating high-temperature synthesis (SHS),
does not have these disadvantages. It can be imple-
mented on standard foundry equipment, is character-
ized by low energy consumption due to the short du-
ration of the process, and most importantly, it enables
the synthesis of the titanium carbide phase from initial
powders of carbon and titanium (or their compounds)
with particle sizes from 100 nm in a wide range of con-
centrations [10].

A number of studies on liquid-phase reinforcement
of silumins with carbide phases have been conducted
in Russia. The study in [11] shows that mechanically
mixing SiC particles into AK12, AK9, and AL25 alloys
contributes to a deterioration of the castings’ dendritic
parameter and an increase in the modulus of elasticity,
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hardness, and bearing capacity. In [5; 12], researchers
compared antifriction compositions based on the AK12
and AK12M2MgN alloys reinforced with dispersed SiC
or TiC particles in amounts of 5 or 10 wt.%, with and
without intermetallic phases (Al;Me type compounds).
It was found that the optimal filler is a titanium carbide
phase in the amount of 10 wt.%, as this increased wear
resistance up to 10 times and reduced the coefficient of
friction by 60 %.

There are also several publications on heat treat-
ment of silumin-based composites [13—16]. The paper
[14] showed that the AK12M2MgN alloy, reinforced
with endogenous (formed in the melt) AlTi, Al;Ti,
AL3Ni, etc. phases and exogenous (introduced from
outside) SiC and Al,03 nano- and microparticles in
the amount of 0.1 wt.%, exhibits a hardness increase
of 50 MPa at r = 20 °C and 30 MPa at 300 °C. After
heat treatment (holding at 515 °C, quenching in water,
and aging at 210 °C), the hardness increased by 110—
160 MPa and 60—80 M Pa, respectively. Similar results
were obtained in [15; 16], where mechanical stirring
of SiC dispersed phase up to 15 wt.% into the AK9h,
AKI2MMrN, and A359 alloys with subsequent T6 heat
treatment accelerated the aging process and increased
hardness overall. The authors attributed this to the en-
hanced density of dislocations in the composites and
the difference in elastic moduli between the matrix and
the reinforcing phase.

These studies provide convincing evidence that
producing and thermally treating composites based
on silumins is promising. However, it is also clear that
domestic developments mainly focus on obtaining
composites through mechanical stirring and primar-
ily use silicon carbide as the filler. In contrast, foreign
studies cover a wider range of production methods and
composite structures. For instance, foreign research-
ers show significant interest in titanium carbide, both
introduced from the outside and formed in the melt
of silumins by the SHS method [17—20]. In [20], re-
searchers added an Al + Si powder mixture in amounts
of 0—40 % to a charge of titanium and graphite, then
mixed, pressed in an argon atmosphere, and intro-
duced it into the Al—Si eutectic melt heated to 900 °C.
X-ray phase analysis showed that at any content of Al
and Si powders, the final composite structure includ-
ed only Al, Si, and TiC phases, confirming that SHS
of the carbide phase can be conducted directly in the
silumin melt.

Care must be taken when selecting the tempera-
ture modes for creating and heat treating such com-
posites, as several studies indicate that the titanium
carbide phase becomes thermally unstable at high
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temperatures and long holding periods in the presence
of silicon [21—24]. In [22], 10 wt.% TiC particles were
introduced into the A1—7%Si melt heated to 700 °C.
After crystallization, the samples were oven-exposed
at temperatures ranging from 500 to 1000 °C for 6
hours. It was found that in the range of 600—800 °C,
titanium carbide decomposes, forming Ti—Al—Si
ternary phase and Al,C5 intermetallic phase, while at
temperatures above 800 °C, the reverse process occurs,
and the carbide phase content nearly restores to the
initial level. However, [23] demonstrated that during
a 20-minute holding at 800 °C of the Al—12Si/TiC
composite, titanium carbide decomposes completely
and irretrievably because silicon atoms diffuse into the
lattice of titanium carbide.

A similar conclusion was made in [24]. At tem-
peratures of 750 and 800 °C, TiC particles decompose
to form Al4C; and TiAlSi, phases, and at 900 and
1000 °C, they form Al4C; and TiAl,Si, phases, and at
=900 and 1000 °C, to form Al4C; and Ti;SiC,.

All authors agree that the carbide phase can degrade
at high temperatures of the silumin melt and during
prolonged holding times. Therefore, the SHS method is
particularly relevant, as it requires minimal time and the
entire cycle of obtaining the composite material, from
charge input to crystallization of the finished product,
lasts no more than 10 minutes, which is insufficient for
carbide phase decomposition.

Another important issue is phase formation in the
presence of other alloying elements and carbide phase
particles. The study [25] explores the influence of 1 % Fe
on the structure and properties of the Al—12%Si—
1%Fe—(0.4—0.8)%TiC composite obtained by the SHS
method. It was found that with increasing titanium
carbide content, o-AlgFe,Si of favorable morphology
forms instead of the sharp-angled $-AlsFeSi phase, en-
hancing the tensile strength from 148.2 to 198.7 MPa,
the yield strength from 84.7 to 93.5 MPa, and the rela-
tive elongation from 2.3 to 4.93 %.

Several studies have focused on the addition of
magnesium, with varying findings. The authors of
[26] mixed 10 wt.% TiC into the silumin composi-
tion Al—14.2%Si—0.3%Myg, additionally introduced
1 wt.% Mg, and subjected the mixture to heat treat-
ment (holding at 525 °C, quenching in cold water, and
aging at 151—155 °C). They attributed the significant
increase in wear resistance to the uniform carbide
phase distribution, decreased surface tension, and in-
creased wettability caused by the presence of magnesi-
um. However, in [27], which studied phase formation
in an Al—Mg—Si alloy reinforced with 2 % TiC du-
ringagingat 160 °C, it was found that the carbide phase

prevents the formation of Guinier—Preston zones and
the release of strengthening metastable Mg—Si pha-
ses in the aluminum matrix. As a result, after heat
treatment, the maximum hardness of the compo-
site (75.8 HV) was lower than that of the matrix alloy
(123 HV). The role of magnesium is also negatively
evaluated in [28], where the Al—3.5vol.%TiC alloy
obtained by the SHS method was introduced into the
Al—10%Si melt at 850 °C to form 2 vol.% TiC, with
0.2—0.4 wt.% Mg added to some samples. After syn-
thesis, the samples were subjected to heat treatment
(holding at 540 °C, quenching in cold water, and ag-
ing at 160 °C). Based on the microstructure analy-
sis, the authors concluded that the Mg,Si compound
forms but segregates near TiC particles and facilitates
the interaction between carbide particles and silicon.
This leads to the formation of complex phases such as
Al;TiSi,C,, and Al3Ti, which slightly enhance hard-
ness and strength but significantly reduce the mate-
rial’s ductility.

Thus, the process of structure formation in compos-
ites based on special silumins is not entirely clear, but
it is evident that their aging kinetics differ significantly
from those of initial silumins, and the phase compo-
sition can undergo significant changes. However, all
studies indicate that the presence of a carbide phase
contributes to enhanced hardness and wear resistance
[29; 30]. This suggests that such reinforcement is most
appropriate for tribological materials requiring this
complex of properties, such as heat-resistant piston
aluminum alloys. In this group, the most widespread
materials are special silumins with nickel, particular-
ly the AKI1I0M2N alloy, which is extensively used to
manufacture piston castings for internal combustion
engines. Previous studies conducted by Samara State
Technical University demonstrated the feasibility of
conducting SHS with AKI0OM2H silumin containing
10 wt.% TiC. This process reduced the friction coeffi-
cient of the composite material by three times without
subsequent heat treatment, while increasing the sei-
zure load by at least 1.5 times compared to the matrix
alloy [31].

To further enhance the material’s characteristics,
we conducted this study to select the optimal heat treat-
ment mode and investigate its effect on the structure and
properties of the AK10M2N-10%TiC composite materi-
al obtained via SHS in the melt.

Research methodology

The AK10M2N alloy produced by “Sammet” LLC
(Russia) according to GOST 30620-98, was used as
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a matrix for the melt. To obtain a charge mixture,
powders of titanium (TPP-7, TS 1715-449-05785388)
and carbon (P-701, GOST 7585-86), taken in a stoi-
chiometric ratio for the SHS reaction Ti + C = TiC,
were mixed with salt Na,TiFg (GOST 10561-80) in
the amount of 5 % of the charge mass. The resulting
composition was then divided into 3 equal portions,
wrapped in aluminum foil and alternately introduced
into the silumin melt heated to a temperature of
900 °C in a graphite crucible of a PS-20/12 melting
furnace (Russia) for conducting SHS reaction and ob-
taining composites.

To study the microstructure, the samples were etched
with a solution of 50%HF + 50%HNO; for 10—15 s.
Metallographic analysis was carried out on a JSM-6390A
scanning electron microscope (“Jeol”, Japan) equipped
with a JSM-2200 module for micro X-ray spectral ana-
lysis (MXSA).

The phase composition was determined by X-ray
diffraction (XRD) phase analysis. X-ray spectra were
recorded on an ARL X’trA automated diffractometer
(“Thermo Scientific”, Switzerland) using CuK,-radi-
ation with continuous scanning in the range of angles
20 = 20°+80° at a speed of 2 degrees/min. HighScore
Plus software (PANalytical B.V., the Netherlands) was
used to analyze the diffractograms.

The samples were subjected to thermal treatment in
a SNOL laboratory chamber furnace with an operating
temperature reaching 1300 °C.

The density of experimental samples was determined
by hydrostatic weighing on VK-300 scales (Russia) of the
4th accuracy class according to GOST 20018-74.

The method based on measuring the elongation of
cylindrical rods, 60 mm long and 7 mm in diameter,
during heating was used to estimate the coefficient of
thermal linear expansion (CTLE). The CTLE value was
measured on a mechanical dilatometer under the follow-
ing conditions: TXA thermocouple, type K; duration —
5 h; temperature limit value — 300 °C; the measurement
interval — 25 °C. CTLE was calculated according to the
formula

L=1
a=—
Lt 1)

where o is the temperature coefficient of linear expan-
sion, K7'; t; and t, are initial and final test temperatu-
res, K; /; and /, are sample lengths corresponding to #
and 75, mm.

Hardness of samples was determined on TSH-2M
hardness tester (Russia) according to GOST 9012-59,
after which the impression diameter was assessed on
a Motic DM-111 microscope (Russia) and analyzed
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using the Motic Educator software. The microhard-
ness of the samples was measured on a standard
PTM-3 microhardness tester (Russia) according
to GOST 9450-76 using a diamond-pyramid hard-
ness test with a square base and an interface angle
at the apex of 136°; the weight on the indenter was
100 g. Compression tests were carried out according to
GOST 25.503-97 on type 111 samples with the diame-
ter dy = 20 mm under a load up to 300 kN. To evaluate
the heat resistance, compression tests were performed
at temperatures of 150 and 250 °C using an Instron
8802 universal machine (USA) with a 3119-406 ther-
mal chamber at a load of 100 kN; the thermocouple
was mounted directly on the sample; the traverse speed
reached 1 mm/min.

Corrosion resistance was evaluated according to
GOST 13819-68 in the Coat Test 3.3.150.150 auto-
clave complex under the following conditions: an aque-
ous solution of 5 % NaCl; gas phase CO, (1 Pa) + H,S
(0.5 MPa) + N, (3.5 MPa) at 80 °C; duration — 240 h;
total pressure — 5 MPa. Corrosion resistance parame-
ters were calculated according to GOST 9.908-85.

Tribological tests were carried out using the “Univer-
sal-1B” universal tribological complex (Russia), accord-
ing to the ring-plane test scheme, which simulates the
operating conditions of friction surfaces “piston — pis-
ton pin” in the internal combustion engine in the follow-
ing mode: normal contact load — 400 N; counterbody
rotation speed — 600 rpm (average linear velocity in the
contact zone is 0.157 m/s); test duration — 60 min (or
until complete seizure).

Results and discussion

During the TiC synthesis, an active and rapid
SHS reaction with bright flashes was observed in the
AKI10M2N melt. The fractures of AKIOM2N-10%TiC
samples obtained after solidification were characterized
by homogeneous gray color, had neither foreign inclu-
sions nor residues of unreacted charge.

The AKI0OM2N alloy belongs to the group of spe-
cial piston silumins with nickel addition. The T1 mode,
that includes artificial aging only, can be used for its
heat treatment aimed at enhancing its strength charac-
teristics. Moreover, the material partially hardens du-
ring cooling in the casting mold, but in this case hard-
ening will not be significant. More frequently the T6
mode is used. It includes hardening within the range of
515—535 °C and artificial aging in the interval of 160—
190 °C [32—34]. Based on the review of the recom-
mended modes, the following were selected as expe-
rimental ones:
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1) heating for hardening at ¢ = 515 °C for 1—2 h
with cooling in cold water and aging at = 190 °C for
1—6 h;

2) heating for hardening at ¢ = 535 °C for 1—2 h
with cooling in cold water and aging at t = 160 °C for
1—6 h.

Hardness was used as a quantitative criterion to eval-
uate the heating effect.

The analysis of the obtained results showed that the
maximum hardness values are achieved by heating for
hardening at ¢t = 515 °C followed by artificial aging at
t = 190 °C for 2 h, but with different periods of hold-
ing for hardening: for the AKIOM2N matrix alloy the
maximum hardness of 152 HB was observed after 2 h
of holding, while for the AKIOM2N—10%TiC sample,
the hardness of 171 HB was registered after 1 h of hold-
ing (Fig. 1). The highly dispersed particles of titanium
carbide obviously contribute to the increase in vacancy
concentration, dislocation density, grain refinement,
which, in combination, intensify structural transforma-
tions. The above modes were found to be optimal, and
further studies were performed after these types of heat
treatment.

The microstructural study of the samples after heat
treatment revealed that many rounded particles, their
sizes ranging from 180 nm to 2 um, were present in the
composite (Fig. 2). MXSA that was conducted further
(Fig. 3) indicates the presence of Ti and C in the com-
posite structure, which confirms their assimilation in
the melt, as well as other elements (Si, Cu, Mg, Ni, and
Fe) included in the initial AK10M2N alloy.

According to the sources [1; 32], after heat treat-
ment of piston silumins, magnesium is usually pre-
sent in their structure in an amount of about 1% in the

Hardness, HB

190 ] “
170 4 sk 10M2N-10%TiC
150
130:
110 |
0 > 5 6 T, h

form of eutectic inclusions of the Mg,Si phase, but it
can also form other Mg-containing compounds. Cop-
per in alloys with nickel forms the main strengthening
phases Al,Cu and Als;Cu,MggSiq, as well as ternary
compounds Al;CuyNi and Al;CuNi. Nickel with iron
can form the AlgFeNi compound, eutectic inclusions
of which are undesirable due to rough morphology.
However, the following phases are most likely to form:
AL3Ni, AlgCu;3Ni and Al;(Ni,Cu),. The XRD analysis
was performed to clarify the obtained phase composi-
tion, which revealed the presence of Al,Cu and Al;Ni
intermetallic phases in the matrix alloy and TiC ce-
ramic phase (9 wt.%) in the composite, which is quite
an acceptable level, taking into account some inho-
mogeneity of its distribution, as well as the presence
of the same Al,Cu, Al;Ni phases (Fig. 4). We can also
assume the presence of other phases from the above-
mentioned list in too small an amount to be detected by
the XRD method.

Investigation of properties

of the AKIOM2N alloy

and the AKI0OM2N—10%TiC
composite material after heat treatment

We conducted comparative studies of the samples of
the initial alloy and the AKIOM2N—10%TiC composite
material before and after heat treatment according to the
recommended modes.

Initially, the density and porosity of the samples were
determined. The obtained data are presented in Table 1.
The comparison of theoretical (p,) and experimental (p,)
density revealed that these values are very close and the
porosity is 0. This phenomenon is not typical for pro-

0 Hardness, HB

D S
170 4
AKI10M2N-10%TiC
150 1
130 4 AK10M2N
110 T T T
0 2 5 6 1,h

Fig. 1. The hardness change of the AKI0M2N alloy and the AK1I0M2N—10%TiC composite material after heating
for hardening with holding for 1 h (@) and 2 h (b) at = 515 °C, cooling in cold water and artificial aging at a temperature

of t=190 °C for 1-6 h

Puc. 1. Usmenenue tBepaoctu ciiaBa AK10M2H u komnosunmonHoro marepuana AK10M2H—10%TiC mociie Harpesa
MoJ 3aKaJKy ¢ BbIAepKKOM 1 U (@) 1 2 4 (b) mpu ¢ = 515 °C, oxJaxxaAeHUsI B XOJOHOI BOJIe U UCKYCCTBEHHOI'O CTapeHU s

rpu £ = 190 °C B TeueHue 1—6 9
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Date{midly): 06/08/23

Performance in nanospace

SEM MAG: 500 x
Bl: 16.00

Fig. 2. Microstructure (x500) of the AK10M2N alloy (a) and the AKIOM2N—10%TiC composite material (b)

after heat treatment according to optimal modes

Puc. 2. MukpoctpykTyphl (x500) crtaBa AK10M2H (a) u kommosunmonHoro matepuanra AK10M2H—10%TiC (b)

MocJje TepMUUECKO 00padOTKU MO ONTUMATIBHOMY PEXUMY

50 pm

5 pm

Marker Element content, wt.% Marker Element content, wt.%

number | A Si Ni Cu | Mg number | A; | si | Ti | C | Ni | Cu | Fe
12 45.86 1.93 23.00  28.24 0.96 38 0.44 0.13 7998 1945 — — —
13 41.56 3.26 28.65  26.53 — 39 57.71 12.84 28.09 136 — — —
14 28.01 70.89 1.10 - - 40 1478 0.30 58.02 23.15 196 1.23 0.57
15 97.15 0.97 — 1.72 0.17 41 64.47 279 - 5.58 14.04 8.96 4.15

Fig.3. MXSA analysis of the AKI0M2N alloy (a) and the AKIOM2N—10%TiC composite material (b) after heat treatment

according to the optimal mode

Puc. 3. Pesynbrarsl MPCA cninaBa AK10M2H () 1 komnosunnonHoro marepuaia AK10M2H—10%TiC (b)

ocJjie TEPMUUYECKON 00pabOTKH 11O ONTUMAIBHOMY PEXUMY
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Fig. 4. X-ray diffraction patterns of the AK10M2N alloy (a) and the AKI0OM2N—10%TiC composite material (b)

after heat treatment according to the optimal mode

Puc. 4. Tudpakrorpammel crtaBa AK10M2H (a) u komnosuiimonHoro Mmarepuaia AK10M2H—10%TiC (b)

nocJjie TepMUUIEcKoil 00padOTKU MO ONTUMATIBHOMY PEXUMY

ducts obtained by SHS, but in this case it may indicate a
high level of adhesive bonding at the interfaces.

For piston silumins, which include the AKIOM2N
alloy, the coefficient of thermal linear expansion
(CTLE) is an important parameter [35; 36]. Figure 5
presents the results obtained at temperatures ranging
from 30 to 300 °C. The maximum CTLE values were
29.6:107% K~! and 25.1-107® K~! for the AKI0M2N
sample and 27.8-107® K~' and 26.1:107® K~' for
AKIOM2N—10%TiC before and after heat treatment,
respectively. The obtained values are close and after
heat treatment in both cases slightly decrease, but the
main conclusion is that reinforcement does not low-
er this index. This is especially important if we keep
in mind that the titanium carbide compound’s own
CTLE is higher than, for example, that of silicon carbide
(6.52+7.15-107% K~' and 4.63+4.7-107% K™, respec-
tively).

It should be noted that the obtained results are not
consistent with the conclusions given in [37]. The lat-
ter study proves that CTLE of the composite material
based on the aluminum alloy of the Al—Cu—Mg sys-

tem reinforced with 60 vol.% SiC using the compres-
sion impregnation method depends on the size of re-
inforcing particles. It was also found that as the size of
silicon carbide particles increase (from 50 to 320 pm),
the CTLE value decreases by 15—20 % at r = 20 °C
due to the shrinking proportion of interfacial bound-
aries with an unstable structure. In our case, there are
highly dispersed particles that obviously form a signi-
ficant number of interfacial boundaries, however, no
increase in CTLE is registered. This can probably be
attributed to the high degree of the particles coherence
with the aluminum matrix as crystal lattice parameters
are quite similar.

To evaluate the mechanical properties, we investigat-
ed the flow stress under uniaxial compression (until the
first crack emerges), relative strain, hardness and micro-
hardness (Table 2).

The results obtained showed that reinforcement
with TiC particles to be followed by heat treatment
can significantly enhance the strength and hardness
values while maintaining sufficient plasticity reserve.
These results are particularly noteworthy in view of

Table 1. Density and porosity of the AKIOM2N alloy and the AKIOM2N—10%TiC composite material
Tabanua 1. [TmorHOCTH 1 MopuctocTh 00pasnoB AK1IOM2H n AKIOM2H—-10%TiC

Composition Pt, g/cm3 Pe> g/cm3 P, %
AKI10M2N without HT 2.720 — —
AK10M2N after HT 2720 B B
(hardening = 515°C, t=2h + aging 190 °C, 2 h)
AK10M2N—-10%TiC without HT 2.847 2.831 0
(randening 515C. 1+ ging 190 °C. 21 247 2840 :
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Fig. 5. Change in CTLE of the AK10M2N alloy
and the AK1I0M2N—10%TiC composite material

as a function of temperature

Puc. 5. smenenne KTJIP ctaa AK10M2H
1 KommiozumonHoro matepraia AK1I0M2H—10%TiC
B 3aBUCHMOCTH OT TeMITIepaTyphl

the fact that, according to [5], the introduction of
10 wt.% of reinforcing TiC particles, 40—100 pm in
size, into the AKI12M2MgN aluminum alloy leads
to a decrease in compressive strength from 489 to
470 MPa, and that of the deformation degree from
17.01 to 12.65 %. Obviously, the increased strength in
our study can be attributed to the higher dispersion
of the reinforcing phase and, consequently, its good
wettability and adhesion.

The AKI10M2N alloy belongs to the group of
heat-resistant alloys, therefore, the compressive
strength was further evaluated at elevated tempera-
tures of 150 and 250 °C under a constant load of 100 kN
(Fig. 6).

The analysis of the obtained data indicates that the
values of the flow stress of both the matrix alloy and the
composite material do not change throughout the tem-
perature range.

Table 3 presents the results of evaluating the rein-
forcement and heat treatment impact on the samples
corrosion resistance. The composites had a slightly
higher corrosion depth index. However, in general, as

Table 2. Mechanical and technological properties of the AKIOM2N alloy and the AK10M2N—10%TiC

composite material

Ta6auwa 2. Mexanundeckue cBoiictBa ciutaBa AK10M2H u komnosuunonHoro Mmarepuaia AK10M2H—10%TiC

Sample composition Hardness, Micro-hardness Compression tests
HB HV, MPa o, MPa o %

AKI10M2N without HT 1100 1135 464 24
AKI10M2N after HT

(hardening 515 °C, 2 h + aging 190 °C, 2 h) 1360 1363 558 33
AKI10M2N—-10%TiC without HT 1520 1502 447 22
AKIOM2N—10%TiC after HT

(hardening 515 °C, 1 h + aging 190 °C, 2 h) 1710 1779 587 20

Table 3. Corrosion parameters of the AKIOM2N alloy and the AKI0M2N—-10%TiC composite material

Ta6auua 3. Kopposuonnsie nokasatenu cmuiasa AK1I0M2H n kommosunmonnoro Mmarepuana AK10M2H—10%TiC

Mass loss Change Corrosion Corrosion
.. Mass loss, R . .
Sample composition per unit area, in sample rate, depth index,
£ kg/m? thickness, m g/(m?-h) mm/year
AKI10M2N without HT 0.0009 0.0003 0.0001 0.0012 0.000004
AKI0M2N after HT
(hardening 515 °C, 2 h + aging 190 °C, 2 h) 0.0038 0.0012 0.0004 0.0050 0.000020
AKI0M2N-10%TiC without HT 0.0238 0.0076 0.0027 0.0316 0.000009
AKI0M2N—-10%TiC after HT
(hardening 515 °C, 1 h + aging 190 °C, 2 h) 0.2193 0.0698 0.0245 0.2910 0.000090
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Table 4. Results of comparative tribological tests of the AKI0M2N alloy and the AK10M2N—10%TiC

composite material

Tabnauua 4. PesynbraThl cpaBHUTEIbHBIX TPUOOTEXHUUECKUX UCTTbITaHUI crutaa AK10M2H

1 KommosuimoHHoro Marepuana AK10M2H—10%TiC

Sample Wear rate, Friction Self-heating temperature
p um/h coefficient at friction, °C

AKI10M2N without HT 22.25 0.57 75
AKI10M2N after HT

(hardening 515 °C, 2 h + aging 190 °C, 2 h) 4.25 0.12 70
AKI10M2N—-10%TiC without HT 0.5 0.09 60
AKI10M2N—-10%TiC after HT

(hardening 515 °C, 1 h + aging 190 °C, 2 h) 0.25 0.03 66

Compressive stress ,, MPa

700
1 AK10M2N

Bl AK10M2N-10%TiC

587 587

600' 558

558
5001
4004

3001

241 240

2004

100

20 150 250 t,°C

Fig. 6. Evaluation of the heat resistance of the AK10M2N
alloy and the AK10M2N—10%TiC composite material
after heat treatment according to the optimal mode

Puc. 6. Ouenka xxapormpouHoctu criiaBa AK10M2H
u KoMmno3uinonHoro marepuaia AKI0OM2H—10%TiC
MOCJIe TePMUYECKOI 06pabOTKHU MO ONITUMAJIBHOMY PEXKUMY

it is the case with the matrix alloy, it does not exceed
0.001 mm/year, so we can state that the obtained mate-
rials are quite resistant to corrosion [38].

For the final analysis of tribological characteristics
of prototypes, the conditions for operating friction sur-
faces “piston-piston pin” in the internal combustion
engine were modeled (Table 4).

During the tests, the AKIOM2H sample showed a
tendency for seizure at friction and deep grooves were
detected along the direction of friction, characteristic
of abrasive wear. Heat treatment of the AK10M2N alloy
significantly reduced the rate of wear and tearing, but
the friction coefficient also increased by the end of the
test. Reinforcement of the matrix alloy with the titani-
um carbide phase led to a significant improvement of
tribological characteristics of the AKIOM2N—10%TiC

composite, however, it is heat treatment that enables to
achieve the minimum values of wear rate and friction
coefficient.

Conclusion

The conducted studies showed that heat treatment
of composite materials with a silumin AKI0M2N
matrix reinforced with a highly dispersed titani-
um carbide phase is an effective way to control their
structure and properties. The study established that
SHS of the AKIOM2N-10%TiC composite, followed
by hardening at 515 °C and aging at 190 °C, produc-
es a practically non-porous material and increases
hardness by 35 HB, microhardness by 416 MPa, and
compression yield stress by 29 MPa. Additionally, it
reduces the wear rate by 17 times and the friction co-
efficient by 4 times, while maintaining the values of
the coefficient of thermal linear expansion, corrosion
resistance, and heat resistance at levels typical for the
matrix alloy.
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