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Abstract: This research explores the potential to enhance the copper solubility limit in high-entropy alloys (HEAs) within the CoCrCuFeNi
system by increasing the nickel content twofold and applying additional heat treatment. The CoCrCu,FeNi, HEAs were synthesized through
mechanical alloying of elemental powders followed by hot pressing. The study investigated the microstructure and phase composition of
CoCrCu,FeNi, HEAs in relation to varying copper concentrations (x = 0; 0.25; 0.5; 0.75; 1.0). The evaluation of the alloy matrix's chemical
composition, which is based on the FCC solid solution, enabled the determination of copper solubility. It was found that doubling the nickel
content, relative to the equiatomic ratio, facilitated the formation of HEAs with a homogenous FCC structure for copper concentrations
up to x < 0.75. Further heat treatment of these HEAs resulted in an enhanced copper solubility of up to 17.5 at.%. The mechanical and
tribological properties of CoCrCu,FeNi, HEAs were also assessed, revealing significant improvements in tensile strength (ranging from 910
to 1045 MPa) and hardness (285—395 HV) for the CoCrCu,FeNi, alloys. Despite the increased copper solubility limit, the heat treatment
process caused a decline in mechanical properties by 35—50 %, attributed to grain size enlargement to 5.5 um. The CoCrCuy;5FeNi,
and CoCrCuFeNi, alloys exhibited the lowest wear rates when tested against Al,O; counterbody, with wear rates of 1,58-107> and
1,48~1()’5 mm3/(N'm), respectively.
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Annoranus: PaboTta nocpsiiieHa M3y4eHUI0 BO3MOXHOCTHU MOBBIIIEHU I MIpeieia PACTBOPUMOCTU MeIM B BBICOKOOHTPOMUMHBIX CIIaBax
(BBC) cucrembl CoCrCuFeNi nyTem 1BYKpaTHOIro yBeJIMYEHU I KOHUEHTPALMKU HUKEJISI U MTPOBEACHU S JOMOJHUTETbHOM TepMUUYECKOI
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obpadotku. BOC CoCrCu,FeNi, H3rotosieHbl MEXaHUYECKUM JIETUPOBAHUEM 3JIEMEHTHBIX ITOPOLUIKOBBIX CMECEH M MX MOCIECAYIOLIUM
ropsg4yuM npeccosanueM. Mcciaenosanel MUKpocTpykTypa u dasosbiii cocta BOC CoCrCu,FeNi, B 3aBUCHMOCTH OT KOHLIEHTPALLUK1
Cu (x = 05 0,25; 0,5; 0,75; 1,0). AHATU3 XMMUYECKOTO COCTaBa MaTPUIII crijiaBa Ha ocHoBe ['LIK TBepmoro pacTBopa Mmo3BOJIUII Ompe-
NeJIUTh PAaCTBOPUMOCTh Meau. [lokazaHo, YTO IBYKpaTHOEe (OTHOCUTEIbHO SKBMATOMHOTIO) COAEepKXaHUEe HUKEJST CIIOCOOCTBOBAJIO MO~
nyuenuto BOC ¢ ogHodasHoii I'IK-cTpykrypoii npu x < 0,75. INocneayoniast repMudeckasi oopaborka BOC npusesna K yBeIUUYeHUIO
pacTBOopuMocTH Meau 10 17,5 at.%. [IpoBeneHbl MCITBITAHKSI MEXaHUYECKMX ¥ TPUOOIOrMuecKux cBoiicts BOC CoCrCu,FeNi,. B critaBax
CoCrCu,FeNi, 10cTUTHYT BEICOKMIT ypOBEHb MPOYHOCTH NpU pacTskeHnu (0T 910 no 1045 MITa) u rBeproctu (285-395 HV). HecmoTps
Ha TIOBBILIIEHKE TIpeliesia PACTBOPUMOCTH MellM, TepMudecKast 00paboTKa mpuBesia K MOHMUXKXEHWIO0 MEXaHUUeCKUX CBOMCTB Ha 35—50 %
13-3a YBEJIMUEHU S pa3Mepa 3epeH 10 5,5 MKM. MUHUMaIbHBIM IIPUBEIEHHBIM U3HOCOM IIPU TPEHU U B ITape ¢ KOHTpTesnoM u3 Al,O5 obia-
natot crunasbl CoCrCu 75FeNi, u CoCrCuFeNi, (1,58-107° 1 1,48-107> MMm>/(H M) COOTBETCTBEHHO).

Karouesbie cioBa: IOpOoIIKOBasg METaJJlyprud, BBICOKOOHTPOTIMIHBIE CIJIaBbl, MEXaHUYECKNE CBOMCTBA, U3HOCOCTOMKOCTD, TEPMUYEC-
Kas 06pa60TKa, npocseuyurBalonias 3JICKTpOHHasA MUKPOCKOITU A, paCTpOBasd 3JIEKTPOHHaA MUKPOCKOITUA.
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Introduction

Over the past decade, high-entropy alloys (HEAS)
based on the Co—Cr—Cu—Fe—Ni system have gained
significant attention across various engineering disci-
plines [1—5] due to their exceptional mechanical prop-
erties at both ambient and elevated temperatures, cou-
pled with remarkable thermal stability. These attributes
render them ideal for critical applications such as com-
bustion chambers and heat exchangers [6]. Their high
corrosion resistance has led to their widespread adoption
in the shipbuilding industry [7]. These alloys have been
effectively utilized in coatings to enhance the corrosion
resistance of magnesium alloy products [§8]. Among their
diverse uses, one of the most notable is in friction pair
materials, attributed to their superior wear resistance
at both room [9—11] and elevated temperatures [12;
13]. Collectively, the attributes of high wear resistance,
ease of manufacturing, and low consolidation temper-
ature when utilizing powder metallurgy methods render
HEAs promising candidates as binders in diamond cut-
ting tools [14; 15].

Extensive research has focused on the interplay be-
tween the mechanical properties and phase composition
of CoCrCuFeNi high-entropy alloys (HEASs). These al-
loys can manifest as either a single-phase entity, com-
prising a substitutional solid solution with an FCC lattice
structure, or a two-phase combination of FCC struc-
tures, contingent upon the concentration of copper [16].
Exceeding the solubility limit of copper resultsina HEA
structure characterized by a matrix FCC solid solution
interspersed with copper-based interlayers also exhibit-
ing an FCC structure [17—19]. Contemporary theories
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suggest that the inclusion of a copper phase diminishes
the mechanical properties of CoCrCuFeNi HEAs and
increases susceptibility to brittle fracture [20—24]. Al-
loys maintaining an equiatomic composition of co-
balt, chromium, iron, and nickel can incorporate up to
9 at.% Cu while preserving a single-phase structure [18].
Therefore, broadening the copper concentration range
that allows CoCrCu FeNi HEAs to remain single-phase
is a crucial objective, as achieving this would enable the
development of HEAs with enhanced physical and me-
chanical characteristics, including improved strength,
hardness, and wear resistance.

To augment the solubility of copper within the solid
FCC solution, one strategy involves increasing the nickel
content, which is uniquely characterized by its unlim-
ited mutual solubility with copper within this family of
HEAs, as evidenced by prior findings [25; 26]. Another
approach is through heat treatment (HT), which stabi-
lizes the structurally unstable state of HEAs typical at
elevated temperatures, thereby enhancing the solubility
of copper in the CoCrFeNi matrix.

This research aims to explore the potential of aug-
menting copper solubility in Co—Cr—Cu—Fe—Ni
HEAs by increasing the nickel concentration and
employing a supplementary quenching process.
It entails a comparative analysis of the mechani-
cal and tribological properties of equiatomic
CoCrCuFeNi HEAs and the modified HEA with a
doubled nickel content relative to the equiatomic
ratio, designated as CoCrCuFeNi,, which were ob-
tained through quenching.
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1. Materials and methods

The initial materials utilized in this study includ-
ed carbonyl iron powder of grade VK-3 (Sintez-CIP
LLC, Dzerzhinsk, Russia) with an average particle size
of 9 um and an impurity content of <0.3 wt.%, car-
bonyl nickel powder of grade PNK-UT3 (Kola MMC,
Monchegorsk, Russia) with a particle size of 10 pm and
impurity content of <0.06 wt.%, reduced cobalt pow-
der of grade PK-1u (Hanrui Cobalt Co. LTD, China),
with a particle size of 1.2 um and impurity content of
<0.03 wt.%, electrolytic chromium powder of grade
PM-ERKh (AO Polema, Tula, Russia) with a parti-
cle size of 80 um and impurity content of 0.05 wt.%,
and electrolytic copper powder of grade PMS-1 (AO
Uralelectromed, V. Pyshma, Russia) with a particle size
of 24 um and impurity content of 0.12 wt.%.

The base alloy for this study was CoCrFeNi,, to
which copper was added in varying mole fractions (0.25,
0.50, 0.75, and 1.0) relative to Co, Cr, and Fe. Powder
mixtures were prepared using a planetary ball mill
(PBM) “Activator-2sl” (Chemical Engineering Plant
LTD, w.v. Dorogino, Novosibirsk region), under con-
ditions optimized in prior research: a jar rotation speed
of 694 rpm, a centrifugal factor of 90 g, for a duration
of 30 min, and a ball to powder weight ratio of 15: 1.
To achieve finer particle sizes, the mixtures were fur-
ther treated with 10 wt.% isopropyl alcohol in the same
milling conditions for an additional 5 min, facilitating
uniform distribution and mutual dissolution of Co, Cr,
Cu, Fe, and Ni [17].

Cylindrical compact samples, 50 mm in diameter
and 5 mm in height, were produced by hot pressing (HP)
the CoCrCu, FeNi, powder mixtures usinga DSP-515 SA
machine (Dr. Fritsch, Germany). The HP was conduct-
ed in a vacuum at a maximum temperature of 1100 °C,
under a compaction pressure of 35 MPa, with an isobar-
ic hold time of 3 min. After HP, the samples underwent
additional HT in a protective hydrogen atmosphere at
1000 °C for 1.5 h.

Flat samples for tensile tests measuring 50 mm
in total length with the working part dimensions of
20x5x2 mm, were fabricated from the compact samples
using the electrical discharge cutting method.

The hardness of the hot-pressed samples was as-
sessed using the Vickers method with an HVS-50 dig-
ital hardness tester (Time Group Inc., China) under a
10 kgfload. Hardness and elastic modulus measurements
were also performed at the Testing Laboratory of Func-
tional Surfaces (National scientific and educational
center MISIS-ISMAN, Moscow, Russia) using a “Nano-
Hardness Tester” (CSM Instruments, Switzerland).

A Berkovich indenter (diamond triangular pyramid)
was employed, applying an 8 mN load, with a loading
speed of 0.36 mN/s, and a hold time at maximum load
of 5s.

Tensile tests were conducted on an “Instron 5966”
universal testing machine (Instron, USA), with the ul-
timate tensile strength determined using the Bluehill
software (Instron, USA).

The tribological behavior of the samples was evalu-
ated using a “Tribometer” automated friction machine
(CSM Instruments, Switzerland), employing a recip-
rocating motion based on the “Ball-on-Disc” configu-
ration. The testing conditions included a track length
of 6 mm, an applied load of 2 N, a maximum speed of
5 cm/s, and a sintered aluminum oxide (Al,05) ball with
a 3 mm diameter as the counterbody. The tests were run
for 4000 cycles (covering 48 m) in air.

The microstructural analysis of both powdered and
compacted materials was examined through scanning
electron microscopy (SEM) using an S-3400N micro-
scope (Hitachi, Japan), equipped with a “NORAN Sys-
tem 7 X-ray” energy-dispersive spectrometer (Thermo
Scientific, USA). Further analysis of the materials’ fine
structure was conducted using a JEM 2100 transmission
electron microscope (JEOL, Japan). Sample preparation
for these analyses involved ion etching with a PIPS II
system (Gatan, USA).

X-ray diffraction (XRD) analysis was performed
using a “D2 Phaser” diffractometer (Bruker, USA) with
CoK,, radiation, employing the Bragg—Brentano geo-
metry over a 20 range of 30 to 130°. Phase identification
was facilitated by the Diffrac. EVA software (Bruker,
USA). To refine the process for generating single-phase
powders, XRD patterns of mixtures post 5, 10, 15,
and 30 min of milling were analyzed, and the micro-
structure of their transversal cross-sections was exa-
mined.

2. Results and discussion

2.1. Fabrication of CoCrCu,FeNi,
alloy powders

To investigate phase formation processes during me-
chanical alloying (MA) of a Co—Cr—Cu—Fe—Ni pow-
der mixture and to determine the optimal conditions
for generating single-phase powders, XRD patterns of
the mixtures after 5, 10, 15, and 30 min of treatment
were examined, alongside analyses of their transversal
cross-section microstructures.

Analysis after 5-minute treatment in the PBM re-
vealed the presence of all phases corresponding to the
starting powders (see Fig. 1 and Table 1), with the phase
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weight content closely aligning with the theoretical
calculations based on the mixture composition. As the
treatment duration increased, a broadening of the dif-
fraction peaks was observed, indicative of significant
deformation within the crystallite lattices. Concurrent-
ly, a reduction in the peak intensities for Co, Cu, and Fe
was noted.

The XRD pattern from the powder mixture after
15 min of PBM treatment, showed asymmetry in the
Ni peaks from the (311) planes. This asymmetry sug-
gests the formation of a new phase with an FCC lattice
type, exhibiting lattice parameters slightly different from
those of Ni (0.3570 and 0. 3525 nm, respectively).
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Fig. 1. XRD patterns of CoCrCuFeNi, alloy powders
after PBM treatment

Puc. 1. PentreHorpaMMbl MOPOIIKOBBIX CMeCeit
CoCrCuFeNi, nocne odbpadborku B [1LIM

Phase composition (wt.%) of Co—Cr—Cu—Fe—2Ni
powder mixtures after mechanical alloying (MA)
at various milling durations (tyg,)

dazoBblii cocTaB (Mac.%) MOPOIIKOBBIX cCMeceit
Co—Cr—Cu—Fe—2Ni nocyiie MexaHU4eCKOTO JIETMpOBaHUS
C Pa3aMYyHON MPOLOJIKUTETBbHOCTBIO (Tyy)

Phase Tma, Min

(Pearson symbol) 5 10 15 30
Co (hP2/1) 12 8 6 —
Cr (cI2/1) 14 14 12 5
Cu (cF4/1) 16 12 10 —
Fe (cI2/1) 22 19 13 —
Ni (cF4/1) 36 47 47 —
FCC (cF4/1) — — 12 95
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Following a 30-min treatment in the PBM, the
powder predominantly consisted of an FCC solid solu-
tion with a minor presence of undissolved chromium
(about 5 %). The residual chromium is not detrimental
to the production of HEAsS, as it is expected to dissolve
into the matrix during the consolidation process through
diffusion.

SEM studies on the structural evolution of the pow-
der mixtures over different processing times revealed
(Fig. 2) that due to the plastic nature of the components,
structure formation during MA occurs via a mechanism
typical for “ductile—ductile” systems. Under the im-
pact of the grinding media, particles deform, creating
new surfaces uncontaminated with oxygen, which form
strong van der Waals bonds.

In the process of PBM, the initial metal particles tend
to form large agglomerates (Fig. 2, a). These agglome-
rates exhibit a layered structure comprising distinguisha-
ble layers of Co, Cr, Cu, Fe, and Ni. The thickness of
these metal layers varies with the particle size used in
the process, typically ranging from 3—5 um for Fe, Co,
and Ni, to 20—30 um for Cr and Cu (Fig. 2, e). As the
milling process progresses, there is a notable gradual
homogenization of the composite granules’ structure
(Fig. 2, b, ¢). expressed in a decrease in the thickness of
the layers of metal components and their more chaotic
arrangement. After ty;, = 30 min, the resulting powders
exhibit a homogeneous microstructure, with Cr present
as submicron-thick interlayers (Fig. 2, d).

The fine structure of CoCrCuFeNi, alloy powders
after 30-minute treatment in the PBM was examined
using transmission electron microscopy (TEM). As
shown in Fig. 3, the powders form complex-shaped
agglomerates with a nanocrystalline structure ex-
hibiting crystallite sizes ranging between 20—
25 nm. Electron diffraction analysis of these partic-
les identified diffraction rings consistent with the
FCC phase. To further evaluate the alloy elemental
homogeneity, EDS mapping was performed. The
uniform intensity of characteristic X-ray emissions
from Co, Cr, Cu, Fe, and Ni across the mapped area
of the MA powder indicates a uniform distribution of
these elements.

2.2. Analysis of CoCrCuxFeNi2 HEAs
after HP and HP + HT

The consolidation of mechanically alloyed pow-
der mixtures was achieved using the HP method, with
some of the HP alloy samples undergoing additional
treatments of annealing and hardening, referred to as
HP + HT. The objective was to examine the copper so-
lubility within the CoCrCu,FeNi, HEA matrix, which
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Layers Co/Cr/Cu/Fe/Ni

Fig. 2. Microstructures of CoCrCuFeNi, powder mixtures after PBM treatment at varied durations (a—d) and elemental
distribution maps (e) derived from a particle treated for 5 min, corresponding to the region indicated in image a

Tyva, Minia—5,6—10,¢—15,d—20

Puc. 2. Mukpoctpyktypsl nopoikosbix cMeceit CoCrCuFeNi, nocie oopadorku B [TLIM
C Pa3JIUYHON MPOJOJIKUTETbHOCTHIO (@—d) U KapThl pacrpeneeHU s 3JIEMEHTOB (€), CHSIThIE ¢ YaCTUIIbI

nocJjie S MUH 00pabOTKM, U3 BbIAEICHHOI Ha (hOTO @ 00acTu
Ty, MUH: @ — 5,0 — 10, ¢ —15,d — 20

involved analyzing the phase composition, microstruc-
ture, and the chemical composition of the different
phases present.

XRD patterns presented in Fig. 4 showcase the struc-
tural outcomes for CoCrCu,FeNi, HEAs after HP and
HP + HT treatments. The primary structure identified
in all HP-treated CoCrCu,FeNi, HEA samples is an
FCC solid solution that incorporates all alloy compo-
nents, characterized by a cF4/1 structural type and a
lattice parameter of 0.3577 nm. Previous studies indi-
cated [17] that in CoCrCu,FeNi alloys, the formation
of a secondary copper-based phase occurs at x > 0.5.
In CoCrCu,FeNi, alloys with an elevated nickel con-
tent, traces of this copper phase become apparent on-

ly at x > 0.75. The detection of this copper phase in
CoCrCu 75FeNi, and CoCrCuFeNi, HP alloys was
confirmed by low-intensity peaks on the lower angle (26)
side of the XR D patterns (Fig. 4, inset).

Applying HT for HP samples of all CoCrCu,FeNi,
HEAs effectively prevents the emergence of the cop-
per (Cu) phase across the board. Notably, even in
the alloy with the highest copper content examined,
CoCrCuFeNi,, the anticipated peaks for the (Cu) phase
were absent, illustrating that HT successfully maintains
the CoCrCuFeNi, HEAs in a single-phase state at ele-
vated temperatures (Fig. 4).

The microstructural characteristics of the com-
pacted samples were explored using the SEM me-
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500 nm

200 nm

Fig. 3. Visualization of a CoCrCuFeNi, powder particle after 30 minutes PBM treatment (a);
area within the white circle indicating the grain microstructure examination zone (b); white rectangle delineating the region
analyzed via EDS (c¢)

Puc. 3. Uzo6paxenue yactuiipl nopoika CoCrCuFeNi, nocie o6padorku B [1LIM B treuenue 30 muH (a);
o00s1acTh (Oesiast OKPYKHOCTb Ha PUC. @), B KOTOPOI M3yuyeHa 3epeHHasi MUKPOCTPYKTYypa (b)
1 00J1acTh (OBl TPSIMOYTOJILHUK Ha pUC. @), B KOTopoii mpoBoauiics DAC-ananus (c)
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Fig. 4. XRD patterns of CoCrCu, FeNi, HEAs after HP (¢) and HP + HT ()
Puc. 4. Pentrenorpammel BOC CoCrCu,FeNi, nocie I'Tl (a) u I'TI + TO (b)
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thod (Fig. 5). It was determined that the matrix of all HP
CoCrCu,FeNi, HEA samples comprises a FCC solid
solution phase. This phase uniformly incorporates sub-
micron Cr,05 oxide particles, which are not detectable
by XRD due to their minimal concentration. The (Cu)

r\ /‘ ; (________Crzos
(Cu)

phase grains only become visible at copper concentra-
tions x > 0.75 (Fig. 5, e). In the CoCrCuFeNi, alloy, the
(Cu) constitutes about 10 % of the material and mani-
fests as polygonal grains located along the grain bound-
aries of the FCC matrix (Fig. 5, g).

Puc. 5. Mukpoctpykrypa BOC CoCrCu,FeNi, nocne I'Tl (a, ¢, e, g) u 'l + TO (b, d, f, h)
a, b — CoCrFeNiy; ¢, d — CoCrCu sFeNiy; e, f— CoCrCu ;5FeNiy; g, h — CoCrCuFeNi,

Fig. 5. Microstructures of CoCrCu,FeNi, HEAs after HP (a, ¢, e, g) and HP + HT (b, d, £, h)
a, b — CoCrFeNi,; ¢, d — CoCrCu sFeNiy; e, f— CoCrCuy ;5FeNi,; g, h — CoCrCuFeNi,
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The HEAs subjected to HP + HT display a uniform
microstructure, with the alloy matrix comprising solely
of a FCC solid solution across all concentrations of Cu
(Fig. 5, b, d, f, h).

TEM was employed to delve into the structural nu-
ances of the CoCrCuFeNi, alloys afted HP and after
HP + HT, with Fig. 6 presenting images at a uniform

magnification to highlight the structural differenc-
es between these treatment stages. The HP-treated
CoCrCuFeNi, alloy showcases an ultrafine-grained
structure, evident from the bright-field image through
the varied contrast across different regions, indicative of
diverse crystallite orientations, and a ring-type diffrac-
tion pattern signaling a polycrystalline structure. The

Fig. 6. Microstructure and electron diffraction pattern of CoCrCuFeNi, alloy samples after HP (@) and HP + HT (&)

Puc. 6. MukpocTpyKkTypa u sjaekTpoHHast audpaxuus oopasuos crtaBa CoCrCuFeNi, nocine I'TI (@) u T'TI + TO (b)

Intensity

Co - 16.5
Cr-17.1
Cu-17.5
Fe — 17.7
Ni - 31.2

Fig. 7. Microstructures of CoCrCuFeNi, HEA after HP (@) and after HP + HT (), including characteristic X-ray spectra

from designated areas
Element concentrations presented in at.%

Puc. 7. Mukpoctpyktypsl BOC CoCrCuFeNi, nocie I'Tl (a) u I'Tl + TO (b) co cnekTpaMu XapaKTepUCTUYECKOTO
PEHTIeHOBCKOTO U3JIyYeHM I, CHITBIMU C BBIICJICHHBIX 001acTeit

KOHHCHTpaHI/II/I 3JICMCHTOB YKa3aHbl B at.%
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average grain size for the HP-treated CoCrCuFeNi, al-
loy is 150 nm (Fig. 6, a).

The application of HT to the CoCrCuFeNi, alloy
induces a substantial increase in the grain size, a con-
sequence of significant recrystallization activity. This
is visualized in Fig. 6, b which displays a grain of the
FCC phase nearly aligned with the [011] zone axis. No-
tably, within this grain, there are neither discernible
grain boundaries nor inclusions of the (Cu) phase. This
observation is in alignment with the findings from both
XRD and SEM analyses. After undergoing the com-
bined HP + HT process, the average grain size in the
CoCrCuFeNi, alloy is recorded to be 5.5 pm.

The Co—Cr—Cu—Fe—Ni powder mixtures were
subjected to high-energy mechanical treatment using
PBM, resulting in a non-equilibrium phase composi-
tion, as outlined in Table 1. This process led to the for-
mation of a supersaturated FCC solid solution, notably
with copper among other components. Analysis of the
chemical composition of the FCC phase after HP, which
encouraged the formation of a thermodynamically sta-
ble structure through activated diffusion processes, al-
lowed for the examination of copper solubility within the
alloy matrix. The EDS analysis, conducted at 10 diffe-
rent points, yielded the average elemental concentra-
tions in the FCC phase. Additionally, it provided visuals
of a characteristic microstructure alongside EDS spec-
tra, depicted in Fig. 7, a. The findings indicated that the
solubility of copper in the FCC phase reached 14.5 at.%,
which is 5.5 at.% higher than that in the equiatomic
CoCrCuFeNi HEA [17].

Subsequent HT further augmented the solubility of
copper in the matrix, achieving a concentration up to
17.5 at.% (Fig. 7, b).

2.3. Investigation of the mechanical
characteristics of CoCrCu,FeNi, HEAs

Figure 8 showcases the relationship between the
hardness and tensile ultimate strength of CoCrCu,FeNi,
HEASs and the fraction of Cu present within them. The
established trends from the test results reveal that the
hardness of the HP samples increases linearly with the
copper content, reaching a peak hardness of 395 HV
for the CoCrCuFeNi, alloy. The hardness of HEAs af-
ter HP + HT is considerably less, ranging from 188 to
240 HV.

The indentation measurements (see Fig. 8, ¢) indi-
cate that a rise in Cu content results in a reduction of
hardness. This softening effect is likely due to the inclu-
sion of the softer (Cu) phase. The process of heat treat-
ment prompts grain growth, which in turn contributes
to the deterioration of mechanical properties. However,

it is important to note that the hardness variance in the
HP + HT samples, relative to Cu concentration, falls
within acceptable error margins, suggesting that the
phase composition of these HEAs remains unchanged
post-treatment.

In terms of tensile strength, the CoCrCu,FeNi,
HEAs produced via the HP method exhibit impres-
sive values ranging from 910 to 1045 MPa (Fig. 8, b).
These figures not only align with those of equiatomic
CoCrCu,FeNi alloys obtained by powder metallurgy
techniques [17] but also surpass the tensile strength of
other similar alloys in the same system [27—30]. After
HP + HT, the HEAs experience a 35—50 % reduction
in tensile strength when compared to the HP-only
alloys. This decline is attributed to the grain growth
observed during the annealing phase of the heat treat-
ment process (illustrated in Fig. 6) during the anneal-
ing process.

2.4. Study of wear resistance
of CoCrCu,FeNi, HEAs

Figure 9 illustrates the relationship between the
friction coefficient and the number of cycles, including
both 2D and 3D profiles of wear track. Data for com-
parison are also provided for alloys with a single-mo-
lar content of Ni as detailed in reference [17]. Despite
variations in the Ni content and the application of HT,
the friction coefficient remains relatively unchanged,
falling within the range of 0.6 to 0.7. The fluctuations
observed are likely due to the accumulation of wear de-
bris between the surfaces in contact during tribological
testing.

According to the data displayed in Fig. 10,
a histogram delineates the reduced wear rate of
CoCrCu,FeNi, HEAs in relation to varying Cu con-
centrations.

For CoCrCu,FeNi, HEAs obtained via the HP
method, there is a discernible trend showing a decrease
in reduced wear as the Cu content increases. This
suggests a direct correlation between the hardness of
the HEAs and their wear resistance. Specifically, the
CoCrCuy 75FeNi, and CoCrCuFeNi, alloys, which
have the highest amounts of copper dissolved in the
FCC matrix, exhibit the lowest wear rates under the
conditions tested (1.58-107> and 1.48-107> mm>/(N-m),
respectively).

The wear resistance of CoCrCu, FeNi, HEAs pro-
cessed through the HP+HT method is comparable or
even superior to that of HP-only alloys at lower Cu con-
centrations. For Cu contents between 0.75 and 1.0 molar
fractions, the wear resistance of the HP + HT alloys de-
creases by 2.5 to 3.0 times.
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Fig. 8. Hardness (a), tensile strength (b) and measuring indentation (c) of CoCrCu,FeNi, HEA

Puc. 8. 3aBucumocTy TBEpIOCTH (@) ¥ TIpeesia TPOYHOCTU TIPU pacTskeHU U (b) OT KOHLIEHTpALMU MeI
B BOC CoCrCu,FeNi, u pe3yabTaThl U3BMEPUTEIbHOIO UHAEHTUPOBAHUSL (€)

This lack of a clear trend can be attributed to the
grain growth during the annealing phase of HT, which
counteracts the beneficial effect of increased Cu con-
centration in the FCC matrix. This finding indicates
that further research is necessary to optimize HT con-
ditions for certain alloys.

The wear mechanism of HEAs was analyzed by
examining wear tracks after testing (Fig. 11).
Grooves marked by white arrows point in the direc-
tion of sliding of the A1,05 counterbody, while dark

64

gray regions identified by EDS consist of Ni and Fe
oxides. These local oxidized areas are a result of
frictional heating during the sliding process [31].
This oxidative wear mechanism, characterized by
the presence of cracks perpendicular to the slid-
ing direction, is common in HEAs with an FCC
structure during dry friction with Al,03 or SizNy
balls [33]. The oxidation process initiates wear,
leading to the detachment of oxidized fragments
along the cracks (insets in Fig. 11, a), which con-
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Puc. 9. 3aBucumMocTs Ko3hGUILIMEHTA TPEHK S OT KOJMYeCcTBa IIUKJIOB 1 3D- 1 2D-u3o006paxkeHus

nopoxek uzHoca BOC CoCrCuFeNi,

a — CoCrCuFeNi [17]; b — CoCrCuFeNi, (I'TT); ¢ — CoCrCuFeNi, (I'TT + TO)

tributes to the fluctuation of the friction coefficient
(Fig. 9). Additionally, the solid wear debris causes
micro-cutting of the sample, as evidenced by the
grooves in the worn areas.

The study concludes that while the concentration
of Cu in the HEAs and subsequent HT do not alter the
wear mechanism, the hardness of the HEAs remains the
key factor determining their wear resistance.

Conclusions

1. Compact samples of CoCrCu,FeNi, HEAs were
produced using MA and HP methods, resulting in either
a single-phase FCC or a two-phase FCC + (Cu) struc-
ture.

2. It has been demonstrated that the solubility limit

Reduced wear, 10" mm’/(N-m)

124 [ CoCrCu,FeNi [17]
Il CoCrCu,FeNi, (HP)

104 [ CoCrCu,FeNi, (HP + HT)

8 -

6 =

4

2

0 -

0 0.25 0.50 0.75 1.00

Fig. 10. Relationship between copper content and reduced

wear rate in CoCrCu,FeNi, HEAs

Puc. 10. 3aBrucuMOCTb MPUBEAEHHOTO U3HOCA
ot conepxanus Mmean B BOC CoCrCu,FeNi,

X

Cu
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Fig. 11. SEM images of wear tracks on CoCrCu,FeNi, HEAs

a — CoCrCu, sFeNi, (HP); 6 — CoCrCu, sFeNi, (HP + HT); 6 — CoCrCuFeNi, (HP); e — CoCrCuFeNi, (HP + HT)

Puc. 11. POM-uso6paxerus nopoxek usnoca BOC CoCrCu,FeNi,
a — CoCrCu sFeNi, (T'TI); 6 — CoCrCuy sFeNi, (I'TI + TO); 6 — CoCrCuFeNi, (I'TI); ¢ — CoCrCuFeNi, (I'TI + TO)

of Cu in the FCC solid solution can be increased from
9.0 at.% to 14.5 at.% by doubling the mole fraction of
Ni in the CoCrCu,FeNi HEAs. This solubility is fur-
ther enhanced to 17.5 at.% with the application of heat
treatment, which includes annealing and quenching
processes.

3. CoCrCu,FeNi, HEAs obtained through the HP
method exhibited high mechanical properties, with
hardness values ranging between 285—395 HV and ten-
sile strengths spanning 910 to 1045 MPa. However, heat
treatment was found to reduce these mechanical proper-
ties, which is attributed to grain growth during isother-
mal annealing.

4. HEAs with a Cu content of 0.75—1.0 molar frac-
tions, specifically those processed by HP, demonstrated
high wear resistance (1.48-107> mm3/(N-m)) in fric-
tion tests with an AI203. The wear mechanism of the
CoCrCu,FeNi, HEAs involves oxidative processes
combined with abrasive action.
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