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Abstract: This study focuses on developing a heterophase process for synthesizing rare-earth zirconates, specifically R,Zr,0;/
R,05-27ZrO, (R = La, Sm, Gd, Dy). We investigated the sorption properties of low-hydrated zirconium hydroxide, a precursor for
complex-oxide phases, towards rare-earth elements' ions (La, Sm, Gd, Dy). The results indicate that sorption by low-hydrated zirconium
hydroxide is a multifaceted process, involving the incorporation of rare-earth cations into the pores of low-hydrated hydroxide and
ion exchange. The paper details the synthesis of R,Zr,0;/R,05:2ZrO, (R = La, Sm, Gd, Dy), considering both “light” and “heavy”
elements. The process involves the interaction between Zr(OH)s,;0¢ 5. 5°(1.6+2.6)H,0, low-hydrated zirconium hydroxide, and
an aqueous solution of rare-earth acetate (C(La’*) = 0.155 mol/L, C(Sm®") = 0.136 mol/L, C(Gd*") = 0.141 mol/L, C(Dy*") =
=(0.120 mol/L) followed by heat treatment. The resulting phases and their thermolysis products were analyzed using differential thermal
analysis and X-ray phase analysis. Single-phase rare-earth zirconates R,Zr,0; (R = La, Sm, Gd) and the Dy,05-2Zr0O, solid solution
were only obtained at 800 °C. The lattice parameters are calculated for each phase. Lanthanum, samarium, and gadolinium zirconates
exibited a cubic pyrochlore structure (Fd3m), while dysprosium displayed a fluorite structure (Fm3m). The average particle size of all
zirconates was 1.14 £ 0.02 um.
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Gd, Dy). Pedynbrarsl ucciaegoBaHuit MoKas3aan, YTO COPOLIMS MAJOBOAHBIM I'MIPOKCUIOM LUPKOHUS SIBISIETCS] CJIOXKHBIM MPOLIECCOM,
BKJIIOYAIOIMM BXOXIeHUEe KaTUOHOB P3D B mMOpbl MaJIOBOIHOTO I'MAPOKCUIA M MIOHHBIN 0OMeH. [TpoBeneH cuHTe3 1iupkoHatoB P33 co-
craBa R,Zr,0; /R,05:2Zr0, (R = La, Sm, Gd, Dy; Bei6op P33 onpenesiics BOBIeUEHUEM B PACCMOTPEHUE «JIETKMX» U «TSKEJIBIX» dJIe-
MeHTOB). OH 3aKJII0YaJICs BO B3aUMOJIEHCTBUM MaJIOBOJHOTO ruipokenia uupkonus Zr(OH);. 0 5.y 5+ (1,6+2,6)H,0 ¢ BonHbIM pacTBo-
pom atterara P39 (C(La*") = 0,155 moxnb/1, C(Sm>*) = 0,136 monb/1, C(Gd>") = 0,141 mons/1, C(Dy*") = 0,120 Moub/11) 1 MOCHEAYIOLIEH
TepMuuecKoii oopadoTke. MeTonamu nuddepeHIalbHO-TEPMUYECKOr0 U PEHTTeHO(ha30BOro aHaJIU30B 0XapaKTepU30BaHbl CUHTE3U-
poBaHHbBIe (ha3bl U IPOLYKTHI X TepMoJin3a. Tonbko npu Temriepatype 800 °C yaaioch moyduTh ogHoda3Hblie HupKoHaThl P3D cocTtaBa
R,Zr,07 (R = La, Sm, Gd) n tBepaniit pactBop Dy,05-2ZrO,. JIng Kax10ii ¢pasbl paccCyuTaHbl apaMeTpbl peineTKu. LlnpkoHaTel 1aHTa-
Ha, caMapus U TaIOTMHUS UMEIOT KyOMYecKYIo CTPYKTYpy nupoxiiopa (Fd3m), a nucnpo3usi — cTpyKTypy dbaooputa (Fm3m). CpenHuit
pa3Mep 4acTUIl y BceX HIMPKOHATOB cocTaBisieT 1,14 + 0,02 MmxMm.

KuroueBbie cjoBa: IMPKOHUIA, JaHTaH, caMapuii, raloJMHUI, TUCTIPO3Uii, IIMPKOHAT, OKCU, MAJOBOAHbBII I'MIPOKCH/I, COPOLIMOHHBIE
CBOMCTBA, reTepoda3Hblii CHHTE3.
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Introduction

R,Zr,0; rare-earth zirconates find extensive appli-
cations as thermal barrier coatings, catalysts, sensors,
oxygen-ion conducting solid electrolytes, and matri-
ces for the immobilization of radioactive waste [1—10].
These compositions possess unique physical and che-
mical properties, including a high melting point, ab-
sence of phase transitions over a wide temperature range,
high coefficient of thermal expansion, and low thermal
conductivity. Additionally, they demonstrate dielectric,
piezo- or ferroelectric, fluorescent, and phosphorescent
properties, along with chemical and radiation resis-
tance, and a high capacity for radionuclide absorption
[1; 4; 10—12].

The primary space groups for R,Zr,0; rare-earth
zirconates are cubic pyrochlore (Fd3m) and defective
fluorite (Fm3m) (Fig. 1) [2].

If the ratio of cation radii r(R*%)/r(Zt*") is less
than 1.46, the resulting substance is classified under a
defective fluorite space group; otherwise, it falls into a
pyrochlore space group [9]. Based on the cation radii,
La—Gd zirconates exhibit a pyrochlore space group,
whereas Tb—Lu zirconates belong to a defective fluo-
rite space group. The coordination number of zirconium
ranges from 4 to 6. Additionally, a decrease in the ca-
tion radius ratio corresponds to an increase in disorder.
To achieve a more ordered structure, one could replace
the rare-earth element cation with a larger-radius cati-
on or replace the zirconium cation with a smaller-radius
cation. [9; 13—15].

The phase diagrams reveal that within the La,0;—
ZrO, systems, La,Zr,0, present, maintaining a pyro-

chlore space group up to the melting point. In the case
of Sm,03;—Zr0,, Sm,Zr,0; exhibits a pyrochlore space
group up to 2080 °C, transitioning to a defective fluorite
space group above this temperature. Within the Gd,0;—
ZrO, system, Gd,Zr,0 solidifies with a pyrochlore
structure below 1550 °C, subsequently transforming into
a disordered fluorite structure (F-Gd,Zr,0;). Notavly,
the Gd,0;—Zr0O, system encompasses a broad region
featuring the R,05:2ZrO, homogeneous solid solution
with a fluorite crystal structure [15—19].

Other researchers have outlined various processes
for the preparation of R,Zr,05 rare-earth zirconates
[1; 4; 12; 14; 15; 20—26]. Notably, papers [4; 20; 21]
detail the solid-phase reparation of rare-earth zirco-
nates through the mechanical mixing of zirconium and
rare-carth element oxides, followed by calcination at
high temperatures (exceeding 1100 °C). However, this
process is notably time-consuming. To expedite so-
lid-phase reactions, mechanochemical synthesis offers
two approaches:

1. Mechanochemical synthesis involves the direct
formation of the compound through the mechanical
processing of reactants in an activator mill.

2. A two-stage process incorporates mechanical acti-
vation of the initial mixture, followed by subsequent heat
treatment [14; 19].

In the co-precipitation method, hydroxides are si-
multaneously precipitated from precursor solutions,
and the resulting sediments are subsequently calcinat-
ed to obtain R,Zr,05 [4; 23; 24]. A known process for
producing R,Zr,0; rare-earth zirconates (R = Gd, Tb,
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Fig. 1. Crystal structures of R,Zr,0; rare-earth zirconates [2]
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Puc. 1. CTpyKTypbl LUPKOHATOB PEAKO3EMEbHbIX 2J1IeMeHTOB R,Zr,07 [2]

Dy) through co-precipitation involves using rare-earth
nitrate and zirconium oxychloride as starting materials.
These are mixed and treated with an aqueous ammonia
solution. The zirconate powders are obtained by calci-
nation of the washed and dried sediment at tempera-
tures ranging from 1000 to 1500 °C for 3 to 6 h in the
presence of air [24].

However, a disadvantage of this method is that the
co-precipitation product forms a gel, making it chal-
lenging to remove impurities through washing. Conse-
quently, the resulting gel contains a significant amount
of wash water.

In the hydrothermal process, the complex oxide
phase precipitates from solutions in an autoclave, form-
ing through nucleation and growth at specific tem-
peratures and pressures. This method is convenient,
straightforward, and easily controllable. Water serves as
the solvent, offering affordability and wide availability
[4; 12].

The sol-gel method involves thermally treating gels
derived from the hydrolysis and subsequent polyconden-
sation of initial metal alcoholates [4; 12; 22; 25; 26].

It’s worth noting that in all the mentioned processes,
the initial reagents consist of oxides, salts, or complex
compounds of zirconium.

The objective of this study is to establish a hetero-
phase method for synthesizing R,Zr,0;/R,05-2Zr0O,
(R = La, Sm, Gd, Dy) rare-earth zirconates us-
ing low-hydrated zirconium hydroxide (referred to as
“low-hydrated hydroxide” or LHH) as the precursor.
This approach aims to lower the synthesis temperature
while achieving the production of single-phase complex
oxides.

Materials and methods

We used zirconium oxochloride (reagent-grade,
TU 6-09-3677-74 Spec., Reakhim, Moscow) and an

16

aqueous ammonia solution (ASC, GOST 24147-80,
Khimmed, Moscow) in this study. Acetates of rare-earth
elements (lanthanum, dysprosium, samarium, gadoli-
nium) were obtained by dissolving the oxide precursors
(La,O5 — reagent-grade, TU 48-4-523-90 Spec.; Dy,0;
(reagent-grade) — TU 48-4-524-90 Spec.; Sm,05 (rea-
gent-grade) — TU 48-4-523-89 Spec.; Gd,0; (rea-
gent-grade), TU 48-4-200-72 Spec.) from Lankhit,
Moscow, in glacial acetic acid (ASC grade, GOST 61-75,
Khimmed). The resulting solution was solidified, fil-
tered, and air-dried to obtain crystallohydrates, such
as La(CH;CO0O0);5-1.6H,0, Gd(CH;COO)5-4.2H,0,
La(CH;CO0O0);-1.8H,0, Dy(CH;C0O0);-4.1H,0. Ace-
tate salts were chosen for their water solubility and the
ease with which volatile products (CO and CO,) could
be removed from the substance.

The zirconium dioxide content in the low-hydra-
ted hydroxide was determined by calcination at 800 to
900 °C to form ZrO,.

The chloride ion content in LHH was assessed using
argentometry (the Folgard method).

To evaluate the sorption capacity of low-hydrated zir-
conium hydroxide under static conditions at room tem-
perature, we employed aqueous solutions of rare-earth
acetates.

The procedure involved adding 8.0 mL of aqueous
solutions of rare-earth element acetates with varying
concentrations (ranging from 0.044 to 0.155 mol/L)
to 0.4 g of LHH samples. The filled tubes underwent
shaking on an AVU-6S shaker for durations spanning
from 20 to 160 min, with 10-minute pauses. Follow-
ing settling, samples were extracted from the solu-
tions to determine the concentrations of rare-earth
elements.

For assessing the concentrations of rare-carth ele-
ments in the initial acetous solutions, determining the
residual concentrations of rare-ecarth elements in the
mother solutions, and investigating the sorption capaci-
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ty of low-hydrated zirconium hydroxide, we employed
direct titration with Trilon B solution (0.05 mol/L). Xy-
lenol orange indicator (0.1 % solution) was utilized, and
titration proceeded until the wine-red color of the solu-
tion transitioned to yellow.

The absorption degree (o, %) of rare-earth ele-
ment cations by the solid phase of low-hydrated zir-
conium hydroxide was calculated using the following
formulas:

o= A/Cinit’ (1)

A= Cinit - Caft//sorp.ﬂ (2)

where C,;; is the initial concentration of the rare-earth
element solution before sorption, mol/L; Cyf /sorp. 18 the
concentration of the rare-earth element solution after
sorption, mol/L.

The sorption capacity (G, mmol/g) for low-hydrated
zirconium hydroxide is determined by:

G=AV/m, 3)

where V'is the volume of the solution, mL; m is the sor-
bent weight, g.

We conducted differential thermal analysis (DTA) in
the 20—1000 °C temperature range with a heating rate of
10 °C/min (£5 °C error) using a Q-1500 D derivatograph
(F. Paulik, J. Paulik, L. Erdey; MOM, Hungary) and a
platinum-rhodium (type S) thermocouple.

X-ray diffraction (XR D) was employed to identify fi-
nal and intermediate products with a Rigaku D/max-C
X-ray diffractometer (CuK|, radiation, Ni filter, Si mo-
nochromator) in the 10° < 206 < 80° angle range, with a
0.02° scanning step.

Powder granulometry was determined using the
DelsaNano laser particle analyzer (Beckman Coulter
Inc., USA) applying dynamic light scattering to esti-
mate particle size distribution in the 0.6 nm to 10 pm
range.

Results and discussion

The low-hydrated Zr(OH);.,0 5. 5 (1.6+2.6)H,0
was synthesized through heterophase interaction be-
tween zirconium oxychloride and a 6.0 mol/L aqueous
solution of ammonia hydrate. Detailed information on
the method, as well as the physical and chemical proper-
ties of zirconium LHH and its thermolysis products, can
be found in [27; 28].

Upon filtration and air drying, we obtained a
well-filtered, crumbly white powder with a low content
of chloride ion impurities (less than 0.05 %). The zirco-
nium dioxide content in the low-hydrated hydroxide is

68.8 = 0.1 wt.%, and the average particle size of zirconi-
um LHH is 2.2 uym.

Our DTA and XRD studies of the low-hydrated zir-
conium hydroxide thermolysis indicated that the LLH
is an X-ray amorphous phase. The dehydration process
halts at r = 400 = 5 °C, resulting in the formation of
monoclinic zirconium dioxide (¢ = 0.514 £ 0.001 nm,
b=10.521 £0.002 nm, ¢ =0.531 £ 0.001 nm, B =99.10
+ 0.01°). Most particles have a size of 2.0—4.0 um, with
an average particle size of 2.8 um.

We proposed a thermal decomposition process for
low-hydrated zirconium hydroxide as follows:

ZH(OH);,1 0 5,15(1.6 +2.6)H,0 —2
—t2

% 7r0,(0.1+0.2)H,0 “22°% 7:0,. (4)
—t2

The low-hydrated zirconium hydroxide, classified as
oxyhydrates, exhibits the presence of hydroxo- and aqua
groups alongside oxo groups, all of which can serve as
sorption sites. Our investigations have identified mac-
ro-, nano-, and ultra nanopores in the zirconium LHH
samples, rendering this class of compounds suitable for
application as a sorbent in the synthesis of complex oxide
phases [27; 28].

In an effort to exploit the sorption properties of
low-hydrated zirconium hydroxide for intensifying the
formation of rare-earth element zirconates, we aimed to
obtain a suitable intermediate product during the sorp-
tion stage. This approach ultimately lowers the synthesis
temperature and facilitates the creation of a single-phase
product. To achieve this, we studied the sorption of ra-
re-earth cations by low-hydrated zirconium hydroxide
under static conditions at room temperature. Adopting
a volume ratio of the aqueous solution of rare-earth ele-
ment acetate to the zirconium LHH sample as S : L =
=1 : 20, the latter demonstrated robust sorption of R3*
cations (R = La, Sm, Gd, Dy) from acetate solutions.
Saturation was observed within 30—40 min. Conse-
quently, 40 min of phase contact during the rare-earth
zirconate synthesis was considered sufficient to achieve
equilibrium in this specific system at the defined S: L
ratio. The table below outlines the properties of ra-
re-earth element sorption by low-hydrated zirconium
hydroxide.

The rare-earth cations in the aqueous solution exist
in the form of hydrates: R(HzO),,]3+ (n = 9.0 for La’",
8.94 for Sm**, 8.27 for Gd*", 8.01 for Dy*") [29; 30].
We observed no correlation between the size of the ra-
re-earth cation and its sorption capacity. The interaction
between rare-earth element hydrates and low-hydrated
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zirconium hydroxide occurs primarily through cat-
ion exchange. The rare-earth cations are bound to the
hydroxo- and aqua groups in the LHH, leading to the re-
lease of H;0™ hydroxonium ions into the solution. This
interaction is further confirmed by the acidification of
the initial solution, resulting in a change in pH from 6
to 5. Sorption by oxyhydrates represents a complex pro-
cess involving both ion exchange and the entry of cations
into the pores.

The heterophase synthesis of rare-earth zirconates
was conducted using amorphous low-hydrated zirco-
nium hydroxide containing 68.8 = 0.1 wt.% of ZrO,
zirconium dioxide and aqueous solutions of acetates
of lanthanum, samarium, gadolinium, and dysprosi-
um (C(La*") = 0.155 mol/L, C(Sm>") = 0.136 mol/L,
C(Gd*") = 0.141 mol/L, C(Dy**) = 0.120 mol/L). The
S : L ratio was maintained at 1:(36+46). Adequate

amounts of acetate solutions were used to achieve the
required R,05:ZrO, molar ratio. The synthesis proce-
dure for rare-earth element zirconates involved adding
an acetate solution of the respective rare-earth ele-
ment to zirconium LHH and stirring the mixture on
a shaker at room temperature for 1—2 h. The resulting
suspension was then evaporated to dryness for 24 h at
t=120°C.

Subsequently, a stepwise heat treatment was carried
out in the 600—900 °C temperature range with a 100 °C
increment. Each step lasted for 2 h. The choice of 600 °C
as the initial temperature was based on the differential
thermal analysis results, where at this temperature and
higher, no observable effects were noted, and the sample
weight remained constant. Fig. 2 illustrates the results
of the thermal analysis of the intermediate product ob-
tained through the interaction of low-hydrated zirconi-

Sorption of R3* (R = La, Sm, Gd, Dy) by low-hydrated zirconium hydroxide, 68.8 £ 0.1 wt.% ZrO, content,

40 min phase contact period

Cop6unst R** (R = La, Sm, Gd, Dy) MaJOBOZHBIM THIPOKCHIOM LINPKOHMUSI TIPY COIEPKAHUI 710, 68,8 + 0,1 mac.%

W TIPOIOJIKUTEIbHOCTY KOHTaKTUpOBaHMs (a3 40 MuH

Concentration
of the R(CH3C00), solution, Concentration change Efficiency Sorption
mol/L after sorption of Zr sorption capacity G,
Initial After sorption A, mol/L by LHH, % mmol/g
Cinit Catt/sorp
R=La%"
0.053 0.045 0.008 15.1 0.16
0.102 0.072 0.030 29.4 0.60
0.155 0.110 0.045 29.0 0.90
R =Sm*"
0.044 0.038 0.006 13.6 0.12
0.100 0.073 0.027 27.0 0.54
0.136 0.100 0.036 26.5 0.72
R=Gd*"
0.060 0.049 0.011 18.3 0.22
0.103 0.071 0.032 31.1 0.64
0.141 0.096 0.045 31.9 0.90
R = Dy**
0.055 0.045 0.010 18.2 0.20
0.105 0.075 0.030 28.6 0.60
0.120 0.086 0.034 28.3 0.68
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um hydroxide with an aqueous solution of dysprosium
acetate, followed by the evaporation of the resulting
mixture.

The DTA curve reveals two endothermic and two
exothermic effects. The first endothermic effect (80—
260 °C) corresponds to dehydration. The thermal ef-
fects observed in the 310—405 °C range are attributed
to the decomposition of the organic component, ac-
companied by the release of CO and CO,. The exo-
thermic effect at 500—550 °C can be associated with
the formation of the final substance. This is substan-
tiated by the absence of an exothermic effect on the
DTA curve at t =400 £ 5 °C, indicating the solidifica-
tion of zirconium dioxide.

The stepwise heat treatment produced finely dis-
persed powders, which were subjected to XRD anal-
ysis. It was observed that the formation of R,Zr,0 /
R,05-2Zr0, (R = La, Sm, Gd, Dy) commenced at
t =600 °C. However, the samples were not single-phase
at this stage; they contained not only zirconate but also
unreacted oxides of zirconium and the rare-earth ele-
ment. In Fig. 3, the XRD pattern of lanthanum zirco-
nate obtained at 600 °C for 2 h is presented. Apart from
the La,Zr,0O; peaks, the XRD pattern exhibits peaks
corresponding to zirconium dioxide and lanthanum
hydroxide.

Single-phase products were successfully obtained
at 800 °C. Using this method, R,Zr,0; (R = La, Sm,

Sample weight, %

Gd) rare-earth zirconates and the Dy,05-2Zr0O, solid
solution were synthesized. Lanthanum, samarium, and
gadolinium zirconates belong to the cubic pyrochlore
(Fd3m) space group:

La,Zr,07: a=10.85%0.01 A,
Sm,Zr,0,: a=10.59 +0.02 A,
Gd,Zr,0: a=10.50 £0.01 A,

while dysprosium zirconate belongs to the fluorite space
group (Fm3m), with a = 5.212 + 0.002 A.

Figure 4 displays the XRD patterns of Sm,Zr,0, and
the Dy,05-2Zr0O, solid solution.

Figure 5 illustrates the particle size distribution
of the synthesized zirconates. In all samples, a distinct
peak is evident on the curves, indicating the maxi-
mum content of powder particles in the range of 0.8—
1.8 um. The average particle size for all zirconates is ap-
proximately the same, with differences in hundredths
of microns, pm: La,Zr,0; — 1.12, Sm,Zr,0; — 1.10,
Gd,Zr,0; — 1.18, Dy,05-2ZrO, — 1.12.

The disparity in particle sizes observed between the
synthesized zirconates and low-hydrated zirconium hy-
droxide can be attributed to the agglomeration of zirco-
nium LHH particles..

Through these investigations, we successfully deve-

2585 M8 556 5 mg (75 °C)
229.0 mg (165 °C)

100
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80

194.5 mg (435 °C)

$ Exotherm.

Endoterm.

TGA 194.0 mg
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Fig. 2. Thermal analysis curves for the sample obtained by interacting low-hydrated zirconium hydroxide (68.8 + 0.1 wt.%
Zr0,) with an aqueous solution of dysprosium acetate (C(Dy**) = 0.120 mol/L) followed by evaporation at #= 120 °C

TGA — weight change curve; DTA — differential thermal analysis curve

Puc. 2. KpI/IBI)Ie TEPMUYCCKOI'o aHaJiu3a 061)33]_[8., MOJIyYEHHOTO MTPU B3aMMOAEHCTBUU MAJTOBOJHOIO THAPOKCUIA

uupkoHus (68,8+0,1 mac.% ZrO, ) c BooHbIM pacTBopoM aueTarta aucrposus (C(Dy

BbINTApUBAHUU MOJyYeHHOI cMecu nipu = 120 °C

3+) = 0,120 MOJIb/7T) ¥ MOCTEAYOIIEeM

TT — kpuBast uameHenust Mmaccbl; ITA — nuddepeHuanbHast KpuBast HarpeBaHuUsI
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Fig. 3. XRD pattern of La,Zr,0; obtained at = 600 °C,
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Puc. 3. Judpakrorpamma uupkoHara jaHtaHa La,Zr,0-,
nosny4yeHHoro rpu 1= 600 °C, =24y
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Fig. 4. XRD patterns of Sm,Zr,0; (a) and Dy,05:2ZrO, (b)
obtained at r=800°C,t=6h

Puc. 4. ludpakrorpaMmMbl LUPKOHATOB Sm,Z1,07 (a)
u Dy,05-2Z1r0, (b), nonyyeHHblx npu t = 800 °C, 1 =614

loped a heterophase process for synthesizing the R,Zr,0;
(R = La, Sm, Gd) and Dy,0;-2ZrO, complex oxide
phases. The use of low-hydrated zirconium hydroxide
as a precursor proved effective in lowering the synthesis
temperature and achieving single-phase products.

Conclusions

1. The low-hydrated zirconium hydroxide with a
composition of Zr(OH);,,0¢ 5., 5°(1.6+2.6)H,0 was
produced through a heterophase process, yielding a
dioxide content of 68.8 + 0.1 wt.%.

20
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Fig. 5. Particle size distribution in R,Zr,0; (R = La, Sm, Gd)
and Dy203 '2Zr02

Puc. 5. PacnipeneneHne yacTui CMUHTE3UPOBAHHBIX
LupKoHaToB cocTaBa R,Zr,04 (R = La, Sm, Gd)

u Dy,05-2Zr0O, o pazmepy

2. The sorption capacity of zirconium LHHs for
rare-earth element cations (La, Sm, Gd, Dy) was
investigated. The results revealed that sorption by
low-hydrated zirconium hydroxide is a multifaceted
process, involving the incorporation of rare-earth
cations into the pores of low-hydrated hydroxide and
ion exchange.

3. Heterophase synthesis experiments were con-
ducted to obtain R,Zr,0; (R = La, Sm, Gd) and
Dy,05-2Zr0, rare-earth zirconates, employing low-hy-
drated zirconium hydroxide and aqueous solutions of
rare-earth element acetates as precursors.

4. XRD analysis demonstrated that the R,Zr,0,
(R = La, Sm, Gd) single-phase rare-earth zirconates
and the Dy,05-2Zr0O, solid solution form at 8§00 °C.
Their lattice parameters were estimated through this
analysis.
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