### ΜΕΤΑΛΛΥΡΓИЯ ΡΕΔΚИХ И БΛΑΓΟΡΟДНЫХ METAΛΛΟΒ / METALLURGY OF RARE AND PRECIOUS METALS

УДК 669.872

https://doi.org/10.17073/0021-3438-2023-2-5-14

Hаучная статья Research article



# Кинетические закономерности гидрометаллургической переработки отслуживших дисплеев: поведение индия

Э.Б. Колмачихина, О.Б. Колмачихина, Я.А. Янкина, З.М. Голибзода

**Уральский федеральный университет имени первого Президента России Б.Н. Ельцина** 620002, Россия, г. Екатеринбург, ул. Мира, 19

Аннотация: Изучены физико-химические закономерности выщелачивания индия с поверхности стеклянных пластин отработанных дисплеев в различных кислотах. Стекла отслуживших дисплеев были предварительно очищены от поляризаторов и измельчены. Их основу составляли оксиды кремния и алюминия. Индий представлен в виде соединения In<sub>2</sub>O<sub>2</sub>·SnO<sub>2</sub>. Содержание индия в полученном материале составляло 174,8 мг/кг. В качестве выщелачивающих агентов использовали индивидуальные растворы серной, соляной и метансульфоновой кислот. Установлено влияние концентраций указанных кислот (0,1-1,0 н), продолжительности выщелачивания (10-60 мин), температуры (298-353 К) и соотношения жидкого к твердому (Ж: Т =  $= (7.5 \div 15.0) : 1 \text{ cm}^3/\text{r})$  на степень извлечения индия в раствор. Частные порядки реакций по  $\text{CH}_3\text{SO}_3\text{H}$ ,  $\text{H}_2\text{SO}_4$ , HCl составили 0,69, 0,67 и 1,10 соответственно. В ходе экспериментов наблюдалось интенсивное повышение концентрации индия в первые 20-40 мин выщелачивания в растворах H<sub>2</sub>SO<sub>4</sub> и HCl, после чего скорость процесса снижалась и извлечение индия практически не росло вследствие уменьшения количества непрореагировавшего индия. При выщелачивании в 0,1-0,4 н растворах CH<sub>3</sub>SO<sub>3</sub>H скорость растворения индия не менялась на всем протяжении эксперимента ввиду того, что количество непрореагировавшего индия снижалось незначительно. Исследуемые кислоты можно расположить в следующий ряд в порядке возрастания их эффективности в растворении индия: СН<sub>3</sub>SO<sub>3</sub>H, Н<sub>2</sub>SO<sub>4</sub>, HCl, что соответствует росту сил данных кислот. Увеличение температуры значительно повышало извлечение индия. Рассчитаны значения кажущейся энергии активации растворения In<sub>2</sub>O<sub>3</sub> в растворах CH<sub>2</sub>SO<sub>3</sub>H, H<sub>2</sub>SO<sub>4</sub>, HCl, составившие 51,4, 51,2, 43,4 кДж/моль соответственно. Обнаружено, что при использовании в качестве выщелачивающего агента HCl увеличение доли жидкой фазы в пульпе от 7,5:1 до 15:1 см<sup>3</sup>/г снижало извлечение индия в 2,4 раза, а начальную скорость вышелачивания – в 3,2 раза. Показано, что повышение Ж: Т при растворении индия в СН₃ЅОҳН  $(c.7.5:1\,\text{до}\,15:1\,\text{cm}^3/\Gamma)$  и  $H_2SO_4$   $(c.10:1\,\text{до}\,15:1\,\text{cm}^3/\Gamma)$  сопровождается незначительным изменением извлечения и начальной скорости выщелачивания. Таким образом, проведенные исследования показали, что выщелачивание индия из стекол отслуживших дисплеев протекает в смешанном режиме при использовании HCl и в кинетическом режиме в растворах H<sub>2</sub>SO<sub>4</sub> и CH<sub>3</sub>SO<sub>3</sub>H.

**Ключевые слова:** индий, выщелачивание, соляная кислота, серная кислота, метансульфоновая кислота, кинетика, кажущаяся энергия активации, порядок реакции

**Благодарности:** Исследование выполнено за счет гранта Российского научного фонда № 22-79-00129. https://rscf.ru/project/22-79-00129

**Для цитирования:** Колмачихина Э.Б., Колмачихина О.Б., Янкина Я.А., Голибзода З.М. Кинетические закономерности гидрометаллургической переработки отслуживших дисплеев: поведение индия. *Известия вузов. Цветная металлургия*. 2023;29(2):5-14. https://doi.org/10.17073/0021-3438-2023-2-5-14

# Kinetic regularities of hydrometallurgical recycling of spent displays: behavior of indium

E.B. Kolmachikhina, O.B. Kolmachikhina, Ya.A. Yankina, Z.M. Golibzoda

Ural Federal University named after the First President of Russia B.N. Yeltsin 19 Mira Str., Yekaterinburg 620002, Russia

☑ Elvira B. Kolmachikhina (e.b.khazieva@urfu.ru)

**Abstract:** This article discusses the physicochemical regularities of indium leaching from the surface of glass plates of used displays in various acids. The glass of used displays was pre-cleaned from polarizers and crushed. Their base is comprised of silicon and aluminum oxides. Indium

is presented in the form of  $In_2O_3 \cdot SnO_2$ . Indium content in the material obtained is 174.8 mg/kg. Individual solutions of sulfuric, hydrochloric and methanesulfonic acids were used as leaching agents. The influence of concentrations of the mentioned acids (0.1-1.0 N), leaching duration (10-60 min), temperature (298-353 K) and liquid-to-solid ratio  $(L:S=(7.5+15.0):1 \text{ cm}^3/g)$  on the degree of indium extraction into solution has been determined. Partial orders of reaction in terms of  $CH_3SO_3H$ ,  $H_2SO_4$ , HCl are 0.69, 0.67 and 1.10, respectively. In the course of experiments an intensive increase in indium concentration was observed in the first 20-40 min f leaching in  $H_2SO_4$  and HCl solutions. The process rate then decreased and indium extraction actually did not increase, due to a fall in the amount of non-reacted indium. During leaching in 0.1-0.4 N in  $CH_3SO_3H$  solutions, the rate of indium dissolution did not change throughout the experiment, since the amount of non-reacted indium gas decreased insignificantly. The acids considered here can be ranked in the following ascending order of their efficiency for indium dissolution:  $CH_3SO_3H$ ,  $H_2SO_4$ , HCl, which corresponds to the growth of strengths of these acids. An increase in the temperature led to a significant increase in indium extraction. The apparent activation energies of  $In_2O_3$  dissolution in  $CH_3SO_3H$ ,  $H_2SO_4$ , HCl solutions have were calculated as equal to 51.4, 51.2, 43.4 kJ/mole, respectively. It was established that with the use of HCl as leaching agent, the increase in the fraction of liquid phase in the slurry from  $7.5:1 \text{ to } 15:1 \text{ cm}^3/g$  lead to fall in indium extraction by 2.4 times and the initial leaching rate by 3.2 times. It was demonstrated that an increase in L:S during indium dissolution in  $CH_3SO_3H$  (from  $7.5:1 \text{ to } 15:1 \text{ cm}^3/g$ ) and  $H_2SO_4$  (from  $10:1 \text{ to } 15:1 \text{ cm}^3/g$ ) is accompanied by insignificant changes

**Keywords:** indium, leaching, hydrochloric acid, sulfuric acid, methanesulfonic acid, kinetics, apparent activation energy, order of reaction **Acknowledgments:** This works was supported by the Russian Science Foundation, Project No. 22-79-00129. https://rscf.ru/en/project/22-79-00129 **For citation:** Kolmachikhina E.B., Kolmachikhina O.B., Yankina Ya.A., Golibzoda Z.M. Kinetic regularities of hydrometallurgical recycling of spent displays: behavior of indium. *Izvestiya. Non-Ferrous Metallurgy.* 2023;29(2):5–14. https://doi.org/10.17073/0021-3438-2023-2-5-14

# Введение

За последние 20 лет структура потребления индия значительно изменилась. Ранее данный металл в основном использовался при изготовлении сплавов, электрических компонентов и полупроводников. В настоящее время основная часть индия применяется в виде оксида индия—олова (indium-tin oxide, далее — ITO). Последний представляет собой твердый раствор оксидов индия и олова (90 %  $\rm In_2O_3$ , 10 %  $\rm SnO_2$ ), обладающий полупроводниковыми свойствами и прозрачностью в видимом свете. Благодаря этим характеристикам ITO незаменим в производстве жидкокристаллических и OLED-дисплеев, солнечных батарей и т.п.

Основным источником индия являются сульфидные цинковые руды, в которых его содержание составляет 1—100 г/т [1]. При существующем уровне потребления индия (около 1500 т/год) [2] его запасов в минеральном сырье хватит лишь на ближайшие 10 лет. Отслужившие мониторы являются наиболее перспективным вторичным источником индия.

В России переработка отслуживших мониторов ограничивается утилизацией плат и люминесцентных ламп. В настоящее время рециклинг дисплеев осуществляется только в нескольких странах (Южная Корея, Япония и Бельгия) ввиду низкого содержания в материале ценных металлов и многокомпонентности изделий.

Дисплеи включают несколько слоев: поляризаторы, стеклянные пластины, жидкие кристаллы. На стеклянные пластины наносят слой ITO тол-

щиной 50-200 нм, содержание индия в них составляет 100-350 мг/кг [2, 3]. На обратную сторону стеклянной подложки прикрепляют слой поляризатора из поливинилацетатной пленки.

Предварительная подготовка стеклянных пластин перед переработкой может включать стадии дробления и измельчения [4], однако присутствие пленки поляризатора осложняет процесс дезинтеграции. Высокотемпературная обработка при  $T=453\div493$  К позволяет сделать поляризатор хрупким, что повышает эффективность измельчения стекла [4, 5]. Также возможно отделение частиц ITO от стеклянной подложки термической обработкой при T=923 К в течение 8-10 мин и последующее удаление продукта с помощью сжатого воздуха [6]. Другие способы концентрирования ITO включают гравиметрическое разделение [4], флотацию [7], абразивную обработку поверхности стекол [8, 9] и др.

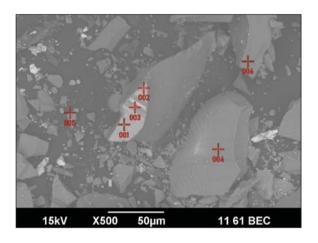
Пирометаллургические приемы позволяют восстанавливать оксиды индия и олова [10, 11] и затем отгонять их, в том числе в виде хлоридов [12]. Гидрометаллургические способы переработки стеклянных пластин включают выщелачивание в различных кислотах (серной [8, 9, 13, 14], соляной [15], азотной [16], лимонной, яблочной [17]) с последующим концентрированием и разделением металлов с помощью жидкостной экстракции [15, 18, 19] (ди(2-этилгексил) фосфорная кислота, трибутилфосфат) и сорбции [20, 21] (Lewatit TP 208, Lewatit VP OC 1026). Интенсифицировать процес-

сы растворения возможно с помощью окислителей и восстановителей [22], а также ультразвуковой обработкой [6, 23, 24] и т.д.

В данной работе проведена сравнительная оценка кинетики выщелачивания индия с поверхности стеклянных пластин отработанных дисплеев в серной, соляной и метансульфоновой кислотах. Последнюю относят к «зеленым» органическим кислотам ввиду ее относительно низкой токсичности, биоразрушаемости, высокой температуры кипения и очень низкого давления насыщенных паров [25, 26]. Также метансульфоновая кислота обладает высокой электропроводностью, а ее соли хорошо растворимы в воде [25]. В последние годы данную кислоту рассматривают в качестве выщелачивающего агента в исследованиях по переработке медного, цинкового, висмутового сырья [26—28], а также в технологии предприятия «The Paroo Station» (Австралия) для извлечения свинца из церусситовой руды [29, 30].

Применяемые в данной работе кислоты относятся к сильным: их можно расположить в следующий ряд в порядке увеличения их силы, выраженной через константу диссоциации (pK<sub>aI</sub>):  $CH_3SO_3H$  (-1,86),  $H_2SO_4$  (-3), HCl (-7) [31, 32].

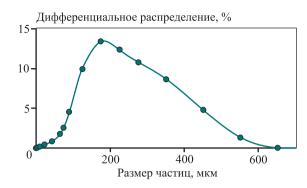
Целью данной работы являлось исследование влияния концентраций кислот, продолжительности, температуры и плотности пульпы на физико-химические закономерности процесса растворения индия с поверхности стеклянных пластин отслуживших дисплеев.


### Методика эксперимента

# Материалы, оборудование и методы исследования

Стекла отслуживших дисплеев предварительно промывали водой, сушили на воздухе, затем выдерживали при температуре 463 К для размягчения и удаления пленки ручным способом. Очищенное стекло измельчали в стержневой мельнице. Методом рассева выделяли фракцию -1 мм измельченного стекла, которую использовали для проведения дальнейших экспериментов. После тщательного перемешивания материала отбирали представительную пробу методом квартования для последующего химического анализа на атомно-абсорбционном спектрофотометре (AAC) novAA 300 («Analytik Jena», Германия). Гранулометрический состав материала определяли с использованием лазерного дифракционного анализатора размера частиц HELOS&RODOS («Sympatec GmbH», Германия). Морфологию образцов измельченного стекла и их химический состав изучали с помощью сканирующего электронного микроскопа JEOL JSM-6390LA (Япония), снабженного системой энергодисперсионного микроанализа JED-2300.

Основная масса материала (>85 %) включала частицы неправильной формы крупностью менее 300 мкм (рис. 1, 2). Согласно данным элементного анализа и ранее проведенным исследованиям [3, 12] в материале преобладали оксиды алюминия, кремния и кальция. На поверхности стекла (точки I, 2 на рис. 1) присутствовали соединения индия и олова, а на поверхности токопроводящих дорожек — молибдена (точка 3, рис. 1). Измельченные стекла дисплеев содержали, мг/кг: In - 174,8, Sn - 1,7.


В экспериментах использовали серную H<sub>2</sub>SO<sub>4</sub> (квалификации XЧ), соляную HCl (XЧ) и метан-



|         | Номер области измерения |      |      |      |      |      |
|---------|-------------------------|------|------|------|------|------|
| Элемент | 001                     | 002  | 003  | 004  | 005  | 006  |
|         | Содержание, %           |      |      |      |      |      |
| Na      | 1,0                     | 0,8  |      |      |      |      |
| Mg      |                         |      |      | 1,7  | 4,0  | 1,3  |
| Al      | 2,8                     | 8,6  | 12,9 | 19,1 | 20,2 | 14,3 |
| Si      | 69,0                    | 74,4 | 77,4 | 68,5 | 69,0 | 56,8 |
| Ca      | 4,1                     | 4,0  | 3,2  | 10,7 | 6,8  | 27,6 |
| Mo      |                         |      | 6,5  |      |      |      |
| In      | 19,9                    | 10,1 |      |      |      |      |
| Sn      | 3,2                     | 2,1  |      |      |      |      |

**Рис. 1.** СЭМ-изображение и элементный состав измельченных стекол дисплеев

**Fig. 1.** SEM image and elemental composition of crushed display glass



**Рис. 2.** Гранулометрический состав измельченных стекол дисплеев

Fig. 2. Particle size distribution of crushed display glass

сульфоновую  $CH_3SO_3H$  (XЧ) кислоты. Исходные растворы кислот готовили разбавлением дистиллированной водой при перемешивании на магнитной мешалке.

### Вышелачивание измельченных стекол

Опыты по выщелачиванию проводили в термостатируемом реакторе объемом  $0.5\,\mathrm{дm}^3$  при температуре  $T=298\div353\,\mathrm{K}$ , продолжительности  $\tau=10\div60\,\mathrm{muh}$ , концентрации кислот  $0.1-1.0\,\mathrm{h}$ , соотношении жидкого и твердого  $\mathrm{K}:\mathrm{T}=(7.5\div15.0):\mathrm{1~cm}^3/\mathrm{r}$ . При варьировании  $\mathrm{K}:\mathrm{T}$  поддерживали постоянным соотношение масс ионов водорода и индия в навеске материала ( $10\,\mathrm{mr}\;\mathrm{H}^+/\mathrm{1~mr}\;\mathrm{In}$ ). Соответственно, концентрацию кислот в данной серии экспериментов варьировали от  $0.15\,\mathrm{дo}\;0.3\,\mathrm{h}$ .

Растворы кислот с заданной концентрацией заливали в реактор, герметизировали, нагревали до заданной температуры при постоянном перемешивании, после чего в реактор загружали навеску материала (20 г) и далее автоматически поддерживали температуру пульпы с точностью ±2 К.

Пульпу после выщелачивания фильтровали, кек промывали дистиллированной водой. Затем кек подвергали кислотной обработке при  $T=363~{\rm K}$  в 20 %-ном растворе соляной кислоты в течение нескольких часов для полного перехода металлов в раствор. После этого кек также фильтровали и промывали дистиллированной водой. Пробы, отобранные в процессе выщелачивания, фильтраты после выщелачивания и кислотной обработки и промывные воды анализировали на содержание ионов индия с помощью AAC novAA300 («Analytik Jena», Германия). Общее извлечение индия ( $\alpha_{\rm In}$ ) оценивали по его содержанию в фильтратах и промывных водах.

#### Обработка экспериментальных данных

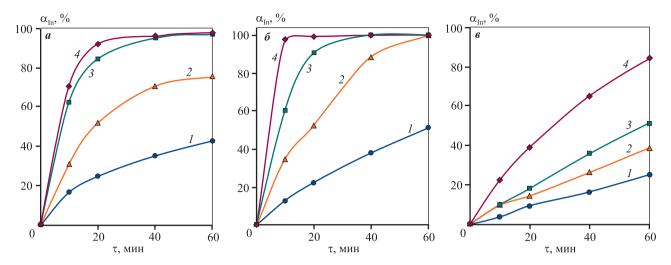
Степень извлечения индия оценивали, учитывая объемы отбираемых проб, по формуле

$$\alpha_{\text{In}}^{i} = \frac{C^{i}[V_{\text{HCX}} - V_{\text{np}}(i-1)] + \sum_{1}^{i-1} (C^{i}V_{\text{np}})}{G_{\text{In}}} \cdot 100 \%, \quad (1)$$

где  $\alpha^{i}_{\text{In}}$  — степень извлечения индия к моменту отбора i-й пробы, %;  $C^{i}$  — концентрация индия в i-й пробе, г/дм<sup>3</sup>;  $V_{\text{пр}}$  — объем пробы, дм<sup>3</sup>;  $V_{\text{исх}}$  — исходный объем раствора выщелачивания, дм<sup>3</sup>;  $G_{\text{In}}$  — масса индия в навеске материала, г.

Кинетические характеристики (частные порядки реакций, кажущиеся энергии активации) определяли путем нахождения мгновенной скорости выщелачивания в начальный момент времени ( $\upsilon_0$ ) через построение касательных к кривым  $\alpha_{\rm In} = f(\tau)$ . Касательные проводили через точку начала координат.

Обобщающее выражение для скорости выщелачивания индия может быть представлено в следующем виде:


$$\frac{d\alpha}{d\tau} = k(T, \mathbf{v}) [C(\alpha)]^n [P(\alpha)]^m S(\alpha), \tag{2}$$

где k — константа скорости, зависящая от температуры и, в случае диффузионного или смешанного режима, от скорости движения жидкости относительно поверхности твердых частиц (v); C и n — концентрация кислоты и частный порядок по концентрации соответственно; P и m — плотность пульпы и частный порядок по плотности пульпы соответственно;  $S(\alpha)$  — функция, описывающая зависимость суммарной поверхности реагирующих частиц от степени протекания реакции (определяется формой частиц и их распределением по крупности).

## Результаты и их обсуждение

# Влияние концентрации кислот на извлечение индия

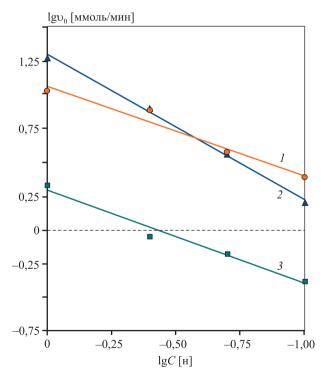
Полученные данные (рис. 3) свидетельствуют об изменении характера зависимостей  $\alpha_{\rm In} = f(\tau)$  при использовании различных кислот. Так, например, в растворах  ${\rm H_2SO_4}$  и HCl (рис. 3, a,  $\delta$ ) в первые 20—40 мин выщелачивания отмечено интенсивное растворение индия, после чего скорость процесса значительно уменьшалась из-за снижения количества непрореагировавшего ITO (см.



**Рис. 3.** Влияние продолжительности выщелачивания на извлечение индия при различных концентрациях  $H_2SO_4$  (a), HCl ( $\delta$ ) и  $CH_3SO_3H$  (s)

 $T = 333 \text{ K}; \text{ Ж}: T = 10:1 \text{ cm}^3/\text{г}; C_{\text{кислот}}, \text{ H}: 0,1 (\emph{I}), 0,2 (\emph{2}), 0,4 (\emph{3})$  и 1,0 (\emph{4})

Fig. 3. Indium recovery as a function of leaching duration at different concentrations of  $H_2SO_4(a)$ ,  $HCl(\delta)$  and  $CH_3SO_3H(\epsilon)$ T = 333 K;  $L: S = 10: 1 \text{ cm}^3/\text{g}$ ;  $C_{acids}$ ; N: 0.1(I), 0.2(2), 0.4(3) and 1.0(4)

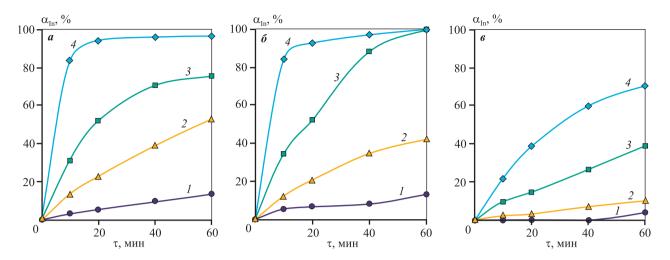

рис. 3, a, кр. 3, 4 и рис. 3,  $\delta$ , кр. 2—4) и концентрации ионов H $^+$  (рис. 3, a, кр. 1, 2 и рис. 3,  $\delta$ , кр. 1). При использовании 0,1—0,4 н растворов CH $_3$ SO $_3$ H графики зависимостей  $\alpha_{\rm In} = f(\tau)$  были прямолинейными, скорость растворения индия практически не менялась на всем протяжении экспериментов (рис. 3,  $\epsilon$ ) ввиду низкого извлечения и большого количества непрореагировавшего индия.

При относительно низких концентрациях выщелачивающих агентов (0,1—0,2 н) извлечение индия за 60 мин было выше в растворах HCl ( $\alpha_{\rm In}$  =  $50\div100$  %), чем в растворах H<sub>2</sub>SO<sub>4</sub> ( $\alpha_{\rm In}$  =  $43\div76$  %) и CH<sub>3</sub>SO<sub>3</sub>H ( $\alpha_{\rm In}$  =  $25\div39$  %). При увеличении концентрации кислот до 0,4—1,0 н уже за 40 мин в растворы H<sub>2</sub>SO<sub>4</sub> и HCl индий извлекался практически полностью ( $\alpha_{\rm In}$  =  $97\div100$  %), в то время как максимальное его извлечение ( $\alpha_{\rm In}$  = 84 %) при использовании CH<sub>3</sub>SO<sub>3</sub>H было достигнуто только при  $C_{\rm CH_3SO_3H}$  = 1,0 н за 60 мин выщелачивания.

Частные порядки реакций выщелачивания индия по  $H_2SO_4$ , HCl и  $CH_3SO_3H$ , определенные через угловые коэффициенты прямых, построенных в координатах  $\lg v_0 - \lg C$  (рис. 4), составили 0,67, 1,10 и 0,69 соответственно.

Полученные значения  $\alpha_{In}$  и закономерности их изменения находятся в хорошем соотношении с коэффициентами диссоциации кислот. Так, HCl практически полностью диссоциирована, и ее кажущаяся степень диссоциации незначительно меняется с повышением концентрации, в отличие от  $H_2SO_4$  и  $CH_3SO_3H$ . Повышение концентрации

HCl приводит к пропорциональному увеличению  $CH^+$ , а следовательно, и к росту значений  $\alpha_{In}$ ,  $\upsilon_0$ . В растворах  $H_2SO_4$  и  $CH_3SO_3H$  высвобождение




**Рис. 4.** Определение частных порядков реакций выщелачивания индия в различных кислотах

 $1 - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ 

**Fig. 4.** Determination of partial orders of indium leaching reactions in different acids

 $1 - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ 

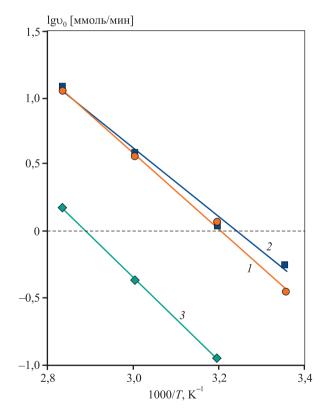


**Рис. 5.** Влияние продолжительности выщелачивания на извлечение индия в растворах  $H_2SO_4$  (*a*), HCl (*б*) и  $CH_3SO_3H$  (*s*) при различных температурах

Ж : T = 10 :  $1 \text{ cm}^3/\Gamma$ ;  $C_{\text{кислот}} = 0.2 \text{ H}$ ; T, K: 298 (1), 313 (2), 333 (3) и 353 (4)

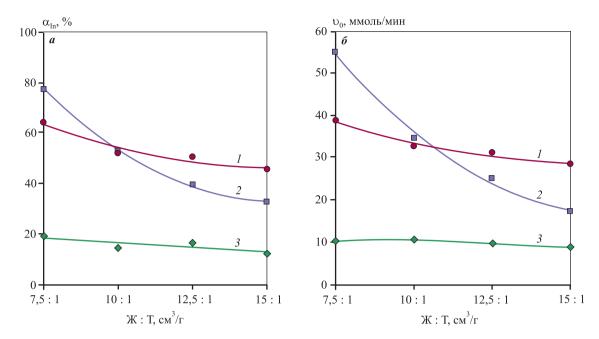
**Fig. 5.** Influence of leaching duration on Indium extraction as a function of leaching duration in  $H_2SO_4(a)$ , HCl(6) and  $CH_3SO_3H(6)$  solutions at different temperatures

L: S = 10: 1 cm<sup>3</sup>/g;  $C_{\text{acids}} = 0.2 \text{ N}$ ; T, K: 298 (1), 313 (2), 333 (3) and 353 (4)


свободных ионов  $H^+$  ограничивается межионными взаимодействиями.

# Влияние температуры на извлечение индия

Увеличение температуры с 298 до 353 К закономерно приводило к повышению извлечения индия из растворов  $H_2SO_4$ , HCl и  $CH_3SO_3H$  на 83, 87 и 67 % соответственно (рис. 5). При низких температурах (298—313 К) эффективность  $CH_3SO_3H$  была минимальной: при T=298 К растворение оксида индия практически не происходило, а при 313 К оно не превышало 10 % (рис. 5,  $\theta$ ).


Наименьшее извлечение индия при  $T=353~\mathrm{K}$ ,  $C_{\mathrm{кислот}}=0,2$  н было получено при использовании  $\mathrm{CH_3SO_3H}$  (70 % за 60 мин), а наибольшее — в растворе HCl (100 % за 60 мин). При выщелачивании в растворах  $\mathrm{H_2SO_4}$  и HCl при  $T=353~\mathrm{K}$  основная часть индия растворялась в первые  $10-20~\mathrm{M}$ ин.

Полученные кинетические закономерности позволили рассчитать величины кажущейся энергии активации ( $E_a$ ) растворения оксида индия в различных кислотах (рис. 6):  $H_2SO_4 - 51,2$  кДж/моль, HCl - 43,4 кДж/моль,  $CH_3SO_3H - 51,4$  кДж/моль. Полученные значения  $E_a$  для реакций  $In_2O_3$  с  $H_2SO_4$  и  $CH_3SO_3H$  достаточно близки и в совокупности с полученными значениями частных порядков по кислотам свидетельствуют о протекании процессов в кинетическом режиме. Вероятнее всего выщелачивание в данных кислотах лимити-



**Рис. 6.** Графики зависимости  $\lg v_0$  от 1/T для определения кажущейся энергии активации растворения индия в различных кислотах  $1 - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ 

**Fig. 6.**  $\lg v_0$  as a function of 1/T for determination of apparent energy activation of indium dissolution in different acids  $I - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ 



**Рис. 7.** Влияние плотности пульпы на извлечение (при  $\tau = 20$  мин) (*a*) и начальные скорости выщелачивания (*б*) индия из растворов различных кислот

 $1 - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ ; T = 333 K

**Fig. 7.** Extraction (at  $\tau = 20$  min) (a) and initial leaching rate from solutions of different acids (6) as a function of slurry density

 $1 - H_2SO_4$ , 2 - HCl,  $3 - CH_3SO_3H$ ; T = 333 K

руется их диссоциацией и последующим взаимодействием ионов  $\mathrm{H}^+$  с ITO. Аналогичное значение  $E_\mathrm{a}$  растворения In в  $\mathrm{H}_2\mathrm{SO}_4$  было получено в работе [34]. Величины кажущейся энергии активации растворения In в растворе HCl и частного порядка по кислоте указывают на протекание процесса в смешанном режиме.

# Влияние плотности пульпы на извлечение индия

В данной серии экспериментов оценивали поведение индия при различных плотностях пульпы, поддерживая постоянными расход ионов водорода и температуру пульпы. Полученные результаты (рис. 7) подтверждают значительное влияние диффузии на выщелачивание индия из ITO в солянокислых растворах: при повышении доли жидкой фазы в пульпе (с 7,5 : 1 до  $15:1\,\mathrm{cm}^3/\mathrm{r}$ ) величина  $\alpha_{\mathrm{In}}$  снижалась в 2,4 раза, а  $\nu_0$  уменьшалась в 3,2 раза. В растворах серной кислоты при повышении доли жидкой фазы с 7,5 : 1 до  $10:1\,\mathrm{cm}^3/\mathrm{r}$  значение  $\alpha_{\mathrm{In}}$  снизилось на  $12\,\%$ , а  $\nu_0$  — на 6 ммоль/мин. При дальнейшем увеличении объема жидкого в пульпе (Ж :  $T=(10\div15):1$ ) оба показателя менялись незначительно. В рас-

творах метансульфоновой кислоты во всем исследуемом диапазоне X: T величина  $\alpha_{In}$  менялась на 5%, а  $\upsilon_0$  — на 2 ммоль/мин.

Таким образом, при выщелачивании индия в растворах  $H_2SO_4$  (Ж :  $T=(10\div15):1$ ) и  $CH_3SO_3H$  (Ж :  $T=(7,5\div15):1$ ) влияние плотности пульпы было минимально.

#### Выводы

Проведенные исследования, направленные на установление влияния выбора кислот ( $H_2SO_4$ , HCl и  $CH_3SO_3H$ ), их концентраций (0,1-1,0 н), температурных режимов (298-353 K), плотности пульпы ( $X:T=(7,5\div15,0):1$ ) и продолжительности (10-60 мин) выщелачивания отслуживших дисплеев, показали принципиальное влияние этих параметров на кинетику извлечения индия в раствор. По результатам экспериментов был сделан ряд общих выводов.

1. Во всем исследуемом диапазоне концентраций исследованных кислот отмечена высокая эффективность соляной кислоты. При ее использовании достигнуто 100 %-ное извлечение индия за 40 мин выщелачивания в 0.4 н растворе при T =

- = 333 K. Увеличение концентрации HCl до 1,0 н сокращало время процесса до 10 мин.
- 2. Повышение температуры выщелачивания позволяет значительно увеличить извлечение индия. Полученные величины кажущейся энергии активации выщелачивания индия свидетельствуют о преимущественном протекании процесса в кинетическом режиме при использовании серной и метансульфоновой кислот, в смешанном режиме при выщелачивании в соляной кислоте.
- 3. Увеличение доли жидкой фазы в пульпе (при постоянном расходе ионов водорода к массе индия) приводит к снижению извлечения и начальной скорости растворения индия в солянокислых растворах. При выщелачивании в растворах серной и метансульфоновой кислот наблюдалось незначительное влияние плотности пульпы на извлечение и начальные скорости растворения индия.

# Список литературы/References

- Mineral commodity summaries 2022. URL: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf (accessed: 24.02.2023).
- Illés I.B., Nagy S., Kékesi T. The recycling of pure metallic indium from waste LCD screens by a combined hydro-electrometallurgical method. *Hydrometallurgy*. 2022;213:105945.
  - https://doi.org/10.1016/j.hydromet.2022.105945
- 3. Wang H.Y. A study of the effects of LCD glass sand on the properties of concrete. *Waste Management*. 2009;29(1):335—341.
  - https://doi.org/10.1016/j.wasman.2008.03.005
- Savvilotidou V., Kousaiti A., Batinic B., Vaccari M., Kastanaki E., Karagianni K., Gidarakos E. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays. *Waste Management*. 2019;87:51—61.
  - https://doi.org/10.1016/j.wasman.2019.01.029
- Li J., Gao S., Duan H., Liu L. Recovery of valuable materials from waste liquid crystal display panel. Waste Management. 2009;29(7):2033—2039.
  - https://doi.org/10.1016/j.wasman.2008.12.013
- Chinnam R.K., Ujaczki É., O'Donoghue L. Leaching indium from discarded LCD glass: A rapid and environmentally friendly process. *Journal of Cleaner Production*. 2020;277:122868.
  - https://doi.org/10.1016/j.jclepro.2020.122868
- 7. Wang S., He Y., Yang J., Feng Y. Enrichment of indium tin oxide from colour filter glass in waste liquid crystal

- display panels through flotation. *Journal of Cleaner Production*. 2018;189:464—471.
- https://doi.org/10.1016/j.jclepro.2018.04.096
- Lahtela V., Virolainen S., Uwaoma A., Kallioinen M., Kärki T., Sainio T. Novel mechanical pre-treatment methods for effective indium recovery from end-of-life liquid-crystal display panels. *Journal of Cleaner Production*. 2019;230:580—591.
  - https://doi.org/10.1016/j.jclepro.2019.05.163
- 9. Virolainen S., Huhtanen T., Laitinen A., Sainio T. Two alternative process routes for recovering pure indium from waste liquid crystal display panels. *Journal of Cleaner Production*. 2020;243:118599.
  - https://doi.org/10.1016/j.jclepro.2019.118599
- Wang Y., Wang R., Zhang C., Wang J. Full components recovery of organic matter and indium from discarded liquid crystal display panels. *Journal of Cleaner Produc*tion. 2021;299:126862.
  - https://doi.org/10.1016/j.jclepro.2021.126862
- Zhang L., Wu B., Chen Y., Xu Z. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process: Pyrolysis of liquid crystals and preparation of indium product. *Journal of Cleaner Production*. 2017;162:141—152. https://doi.org/10.1016/j.jclepro.2017.06.031
- Park K-S., Sato W., Grause G., Kameda T., Yoshioka T. Recovery of indium from In<sub>2</sub>O<sub>3</sub> and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. *Thermochimica Acta*. 2009;493(1-2):105—108. https://doi.org/10.1016/j.tca.2009.03.003
- 13. Rocchetti L., Amato A., Fonti V., Ubaldini S., de Michelis I., Kopacek B., Vegliò F., Beolchini F. Cross-current leaching of indium from end-of-life LCD panels. *Waste Management*. 2015;42:180—187.
  - https://doi.org/10.1016/j.wasman.2015.04.035
- Houssaine Moutiy E., Tran L-H., Mueller K.K., Coudert L., Blais J-F. Optimized indium solubilization from LCD panels using H<sub>2</sub>SO<sub>4</sub> leaching. *Waste Management*. 2020;114:53—61.
  - https://doi.org/10.1016/j.wasman.2020.07.002
- Kato T., Igarashi S., Ishiwatari Y., Furukawa M., Yamaguchi H. Separation and concentration of indium from a liquid crystal display via homogeneous liquid—liquid extraction. *Hydrometallurgy*. 2013;137:148—155. https://doi.org/10.1016/j.hydromet.2013.06.004
- Lee C-H., Jeong M-K., Fatih Kilicaslan M., Lee J-H., Hong H-S., Hong S-J. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM. Waste Management. 2013;33(3):730-734.
  - https://doi.org/10.1016/j.wasman.2012.10.002
- 17. Argenta A.B., Reis C.M., Mello G.P., Dotto G.L., Tana-

be E.H., Bertuol D.A. Supercritical CO<sub>2</sub> extraction of indium present in liquid crystal displays from discarded cell phones using organic acids. The Journal of Supercritical Fluids. 2017;120:95-101.

#### https://doi.org/10.1016/j.supflu.2016.10.014

- 18. Virolainen S., Ibana D., Paatero E. Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy. 2011;107(1-2):56-61.
  - https://doi.org/10.1016/j.hydromet.2011.01.005
- 19. Ruan J., Guo Y., Qiao Q. Recovery of indium from scrap TFT-LCDs by solvent extraction. Procedia Environmental Sciences. 2012;16:545-551.
  - https://doi.org/10.1016/j.proenv.2012.10.075
- 20. Assefi M., Maroufi S., Nekouei R.K., Sahajwalla V. Selective recovery of indium from scrap LCD panels using macroporous resins. Journal of Cleaner Production. 2018;180:814-822.
  - https://doi.org/10.1016/j.jclepro.2018.01.165
- 21. Fortin-Lecomte C., Tran L-H., Rioux G., Coudert L., Blais J-F. Recovery of indium from acidic leach solutions of spent LCD panels using ion exchange. Hydrometallurgy. 2022;210:105845.
  - https://doi.org/10.1016/j.hydromet.2022.105845
- 22. Qin J., Ning S., Fujita T., Wei Y., Zhang S., Lu S. Leaching of indium and tin from waste LCD by a time-efficient method assisted planetary high energy ball milling. Waste Management. 2021;120:193-201.
  - https://doi.org/10.1016/j.wasman.2020.11.028
- 23. Zhang K., Li B., Wu Y., Wang W., Li R., Zhang Y-N., Zuo T. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Management. 2017;64:236-243.
  - https://doi.org/10.1016/j.wasman.2017.03.031
- 24. Souada M., Louage C., Doisy J-Y., Meunier L., Benderrag A., Ouddane B., Bellayer S., Nuns N., Traisnel M., Maschke U. Extraction of indium-tin oxide from end-oflife LCD panels using ultrasound assisted acid leaching. Ultrasonics Sonochemistry. 2018;40:929-936. https://doi.org/10.1016/j.ultsonch.2017.08.043
- 25. Gernon M.D., Wu M., Buszta T., Janney P. Environmental benefits of methanesulfonic acid. Green Chemistry.
- 1999;1(3):127—140. https://doi.org/10.1039/A900157C 26. Palden T., Onghena B., Regadío M., Binnemans K. Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. Green Chemistry. 2019;21(19):5394-5404.

https://doi.org/10.1039/C9GC02238D

- 27. Wang H., Yang S., Chang C., Zhou X., Deng X., He J., He X., Chen Y. Direct oxidative pressure leaching of bismuth sulfide concentrate in methanesulfonic acid medium. Hydrometallurgy. 2020;194:105347.
  - https://doi.org/10.1016/j.hydromet.2020.105347
- Wu J., Ahn J., Lee J. Kinetic and mechanism studies using shrinking core model for copper leaching from chalcopyrite in methanesulfonic acid with hydrogen peroxide. Mineral Processing and Extractive Metallurgy Review. 2021:42(1):38-45.
  - https://doi.org/10.1080/08827508.2020.1795850
- 29. Wu Z., Dreisinger D.B., Urch H., Fassbender S. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA). Hydrometallurgy. 2014;142:23-35.
  - https://doi.org/10.1016/j.hydromet.2013.10.018
- 30. Dreisinger D., Baxter K., Worland A., Cooper T., Cau T., Waters N. Lead metal production at Paroo station mine using leach-electrowinning process in methane sulfonic acid solution. In: PbZn 2020: 9th International Symposium on Lead and Zinc Processing (San Diego, USA, 23-27 February, 2020). Switzerland, Springer, 2020. P. 135-163.
  - https://doi.org/10.1007/978-3-030-37070-1 12
- 31. Зинченко А.В., Изотова С.Г., Румянцев А.В. Новый справочник химика и технолога. Химическое равновесие. Свойства растворов. С.-Пб.: АНО НПО «Профессионал», 2004. 998 с.
- 32. Guthrie J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20° pK units. Canadian Journal of Chemistry. 1978;56(17):2342-2354. https://doi.org/10.1139/v78-385
- 33. Illés I.B., Kékesi T. The application of selective leaching and complex anion exchange in a novel aqueous process to produce pure indium from waste liquid crystal display panels. Journal of Environmental Chemical Engineering. 2022;10(5):108420.
  - https://doi.org/10.1016/j.jece.2022.108420
- 34. Cao Y., Li F., Li G., Huang J., Zhu H., He W. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis. Waste Management. 2020;102:635-644.
  - https://doi.org/10.1016/j.wasman.2019.11.029

# Информация об авторах

Эльвира Барыевна Колмачихина — к.т.н., науч. сотрудник лаборатории перспективных технологий комплексной переработки минерального и техногенного сырья цветных и черных металлов, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина (УрФУ).

https://orcid.org/0000-0002-6007-498X

E-mail: e.b.khazieva@urfu.ru

**Ольга Борисовна Колмачихина** — к.т.н., доцент кафедры металлургии цветных металлов, УрФУ.

E-mail: o.b.kolmachikhina@urfu.ru

**Яна Александровна Янкина** — студентка кафедры металлургии цветных металлов,  $Ур\Phi У$ .

E-mail: yankina.1999@mail.ru

Замира Мирзомурод Голибзода — студентка кафедры металлургии цветных металлов, УрФУ.

E-mail: golibzoda@mail.ru

#### **Information about the authors**

Elvira B. Kolmachikhina — Cand. Sci. (Eng.), Research Professor of the Laboratory of Advanced Technologies for Complex Processing of Mineral and Technogenic Raw Materials of Non-Ferrous and Ferrous Metals, Ural Federal University named after the First President of Russia B.N. Yeltsin (UrFU). https://orcid.org/0000-0002-6007-498X

E-mail: e.b.khazieva@urfu.ru

**Olga B. Kolmachikhina** — Cand. Sci. (Eng.), Associated Professor of the Department of non-ferrous metallurgy, UrFU.

E-mail: o.b.kolmachikhina@urfu.ru

**Yana A. Yankina** — Student of the Department of Non-Ferrous Metallurgy, UrFU.

E-mail: yankina.1999@mail.ru

**Zamira M. Golibzoda** — Student of the Department of Non-Ferrous Metallurgy, UrFU. E-mail: golibzoda@mail.ru

### Вклад авторов

**Э.Б. Колмачихина** — определение цели работы, проведение экспериментов и анализов, подготовка текста статьи.

**О.Б. Колмачихина** — участие в обсуждении результатов, подготовка текста статьи.

**Я.А. Янкина** — проведение экспериментов, выполнение химического анализа, участие в обсуждении результатов.

**3.М. Голибзода** — проведение экспериментов, участие в обсуждении результатов.

### **Contribution of the authors**

**E.B. Kolmachikhina** – determined the purpose of the work, conducted experiments and analyses, prepared the text.

**O.B. Kolmachikhina** — participated in the discussion of the results, prepared the text.

**Ya.A. Yankina** — conducted experiments, performed chemical analysis, participated in the discussion of the results.

**Z.M.** Golibzoda – conducted experiments, participated in the discussion of the results.

Статья поступила в редакцию 27.09.2022, доработана 05.03.2023, подписана в печать 06.03.2023

The article was submitted 27.09.2022, revised 05.03.2023, accepted for publication 06.03.2023